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Abstract

A linearly unstable, sinusoidal E×B shear flow is examined in the gyrokinetic framework in both

the linear and nonlinear regimes. In the linear regime, it is shown that the eigenmode spectrum

is nearly identical to hydrodynamic shear flows, with a conjugate stable mode found at every

unstable wavenumber. In the nonlinear regime, turbulent saturation of the instability is examined

with and without the inclusion of a driving term that prevents nonlinear flattening of the mean

flow, and a scale-independent radiative damping term that suppresses the excitation of conjugate

stable modes. A simple fluid model for how momentum transport and partial flattening of the

mean flow scale with the driving term is constructed, from which it is shown that, except at high

radiative damping, stable modes play an important role in the turbulent state and yield significantly

improved quantitative predictions when compared with corresponding models neglecting stable

modes.
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I. INTRODUCTION

The prevalence of sheared flows in diverse systems has motivated their study for over a

century. Their potential to drive instabilities and turbulence in fluids and plasmas is central

to angular momentum transport in astrophysical disks [1, 2], to transport in the Earth’s

magnetosphere [3], and to the possible generation and saturation of confinement-modifying

zonal flows in fusion devices [4]. The linear stability of simple shear flow configurations has

been thoroughly investigated from linear equations [5, 6] and provides a rough understanding

of the nature of more complex flow profiles early in their development, before unstable

perturbations grow too large [7, 8]. However, as these flows develop beyond the regime of

validity of linearized models, and nonlinear interactions between different components of the

fluctuation become important, capturing or understanding their behavior with any set of

constructs based on linear analysis becomes problematic [9–11].

Instead, studies generally rely on direct numerical simulations to investigate relevant

physical effects [3, 8, 12]. In many cases of interest, these methods cannot produce solutions

for physically relevant parameters, such as the high Reynolds numbers found in astrophys-

ical systems. This motivates the development of scaling models that can inform how the

system extrapolates to parameter regimes inaccessible to simulations. Valid scaling models

require an understanding of the physics of all relevant phenomena, including turbulent re-

sponses that modify the unstable flow, like nonlinear fluctuation structures, cascades, and

momentum transport.

Regarding nonlinear processes that become relevant as the linear growth phase ends,

recent analytical work on shear-flow instability saturation has demonstrated the importance

of fluctuation dissipation that arises at large scales due to excitation of stable modes [13].

When an unstable shear flow is perturbed from equilibrium, these linear modes are generally

a part of the initial perturbation, decaying from their small initial amplitude. Given this

initial decay, stable modes are typically ignored in constructing reduced nonlinear models

that draw from linear physics [9–11]. However, nonlinear interactions with unstable modes

can drive stable modes to large amplitude. Because they are linearly stable, they provide a

route for energy to be removed from fluctuations at large scales, before it is able to cascade to

small scales, thereby modifying the flow, its spectrum, and its transport [13]. This represents

a significant departure from the usual picture of instability-driven turbulence, where energy
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injection by unstable modes is assumed to be balanced by conservative nonlinear energy

transfer to small, dissipative scales.

While it has been shown that nonlinear interactions with large-scale stable modes can

be important in saturating shear-flow instabilities, their amplitude and contribution to the

fluctuating flow and momentum transport in fully-developed turbulence remains an open

question, which we pursue in this paper. Additionally, we explore whether reduced models of

shear-flow-driven turbulence that are based solely on the linear instability might be improved

by including the effects of large-scale stable modes. This is a natural expectation given their

importance in saturating the instability, their introduction of a large-scale linear energy sink,

and their potential to modify momentum transport. This is also motivated by recent work

in the context of instability-driven turbulence in fusion devices, where reduced turbulence

models that include details of stable modes and instability saturation physics have shown

to be effective [14–16].

We address these questions by performing direct numerical simulations of an unstable

shear flow that develops into turbulence, and comparing the contribution of different linear

modes to the turbulent flow and the Reynolds stress. Our simulations are performed using

the gyrokinetic turbulence code Gene [17, 18], which has previously been used to examine

stable modes in other turbulent systems [19, 20], and includes both initial value and eigen-

value solvers. This allows us to benchmark our calculated growth rates against previous

gyrokinetic studies of the same system [21], as well as investigate differences between shear

flow instabilities in hydrodynamics and gyrokinetics with regards to both the linear mode

spectrum and instability saturation. In particular, while it is understood that all unstable,

inviscid, incompressible, two-dimensional (2D) hydrodynamic flows include one stable mode

for every unstable mode [6], and previous work has shown that these stable mode are non-

linearly driven in the fluid system [13], whether these results apply to the gyrokinetic case

as well has not been explored. To allow for more direct comparisons with previous work, all

simulations presented in this paper are effectively 2D, with no variations in the direction of

the strong guide field (kz = 0).

The flow we examine is a sinusoidally-varying E × B parallel shear flow with periodic

boundary conditions. The hydrodynamic counterpart to this flow is often referred to as

Kolmogorov flow when it is maintained by a constant forcing term [22–24]. This flow profile

is particularly relevant to astrophysical disks, where its Kelvin-Helmholtz (KH) instability
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is studied as a saturation mechanism for the magnetorotational instability [25–30] or its

collisionless counterpart [31], and in fusion devices, where it is studied as a potential sec-

ondary and tertiary instability to streamers and zonal flows [4, 32]. In order to admit a

quasi-stationary state of driven turbulence where energy dissipation is balanced by energy

injection, we continually reinforce the mean flow using a Krook operator previously em-

ployed similarly to reinforce current gradients in tearing mode studies [33], and referred to

as a linear relaxation term in studies of barotropic jets [34]. With this forcing term, the

system bears a strong resemblance to Kolmogorov flow [22–24], with the exception that it

is not a constant forcing. From a numerical perspective, Kolmogorov flow presents a conve-

nient choice of unstable shear flow to study due to its simple description in a Fourier basis

and the lack of no-slip boundary conditions that could otherwise generate boundary layers.

This also allows us to address whether the saturation physics active in the free shear layer

[13] is applicable to a driven periodic shear flow.

Our simulations also include damping terms in the form of hyperdissipation and scale-

independent radiative damping. The form of the radiative damping term is such that it

damps every mode equally. In systems with pairs of stable and unstable modes, this dispro-

portionately affects the stable mode amplitude relative to the unstable one in the nonlinear

state [35]. Thus, varying the degree of radiative damping in our system allows us to assess

whether different shear-driven turbulence regimes exist with significantly different stable

mode effects, and how these regimes might differ.

The remainder of this paper is organized as follows. Section II starts with a brief review

of hydrodynamic parallel shear flows for comparison with our gyrokinetic results, as well

as some unique aspects of the particular flow profile studied here, followed by a discussion

of the numerical implementation used in our work, including the specific forms of forcing

and dissipation. In Sec. III we show the full eigenmode spectrum for the gyrokinetic KH

instability. A description of the nonlinear evolution of the flow is presented in Sec. IV,

where we discuss saturation and decaying turbulence when forcing is absent, driven turbu-

lence with external forcing, and turbulent momentum transport in this system. Section V

examines the turbulence in terms of the role played by the linear eigenmodes, and compares

reduced descriptions and scaling models of the turbulence with and without stable modes.

Conclusions are presented in Sec. VI.

Throughout this paper, we adopt the notation that Â(x, ky) denotes the Fourier transform
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in y of A(x, y), and Ã(kx, ky) denotes the Fourier transform in x and y.

II. SHEAR FLOW INSTABILITY

A. Rayleigh’s Stability Equation

The stability of parallel shear flows is generally investigated by examining infinitesimal

perturbations about equilibrium solutions to the Navier-Stokes equation. When considering

a 2D, inviscid, incompressible flow that is perturbed from an equilibrium, the vorticity

equation becomes

∂

∂t
∇2φ+ V

∂

∂y
∇2φ−

d2V

dx2

∂φ

∂y
+

∂φ

∂x

∂

∂y
∇2φ−

∂φ

∂y

∂

∂x
∇2φ = 0, (1)

where V (x) is the y-directed equilibrium shear flow, and φ(x, y, t) is the streamfunction of

the perturbation v = ∇φ × ẑ. The linear dynamics can then be explored by dropping the

nonlinearities and using the normal mode ansatz

φ(x, y, t) =
∑

ky

∑

j

φ̂j(x, ky)e
i(kyy+ωjt), (2)

yielding

(ωj + kyV )

(

∂2

∂x2
− k2

y

)

φ̂j − kyφ̂j
d2V

dx2
= 0. (3)

Equation (3) is known as Rayleigh’s stability equation, or as the Orr-Sommerfeld equation

when the effect of viscosity on φ is included. It can be solved as an eigenvalue problem,

yielding a set of eigenvalues ωj and eigenmodes φ̂j, with j enumerating the eigenmodes at

a given ky. The eigenvalue ωj is complex, with real frequency Re(ωj) and growth rate γj =

−Im(ωj). If any eigenmode has a positive growth rate, the flow is unstable. Furthermore,

taking the complex conjugate of Eq. (3) shows that for each unstable solution there exists

a stable solution with equal and opposite growth rate [6]. Previous work [13] demonstrated

that nonlinear interactions with these stable modes play an important role in saturating

the growth of unstable modes. In the present work we perform nonlinear simulations of

an unstable shear flow and examine the role played by stable modes beyond the onset of

saturation.
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B. Kolmogorov Flow

One unstable flow profile of relevance in fusion and astrophysical systems is a sinusoidal

equilibrium flow with periodic boundary conditions [2, 4, 21, 25–31]. For a sinusoidal flow

profile V (x) = V0 cos(k
eq
x x) in a periodic domain, Eq. (3) lends itself well to being solved

using spectral methods. Defining φ̃j(kx, ky) as the Fourier series expansion of φ̂j(x, ky), the

Fourier representation of Eq. (3) is

ωj(k
2
x + k2

y)φ̃j +
kyV0

2

[

(k2
x − 2kxk

eq
x + k2

y)φ̃
−
j + (k2

x + 2kxk
eq
x + k2

y)φ̃
+
j

]

= 0, (4)

where φ̃±
j ≡ φ̃j(kx ± keq

x , ky). Equation (4) immediately demonstrates that each eigenmode

exhibits a discrete, comb-like structure when viewed through a Fourier transform: for a

given eigenmode φ̂j(x, ky), if its Fourier transform φ̃j(kx, ky) is nonzero at some kx, then

it is also nonzero at kx + nkeq
x for every integer n (though φ̃j is still expected to fall off

at large |kx|, so that calculations with a finite number of kx can be expected to capture

the structure well). This property of the system will have important consequences in later

sections when we compare simulations with different box sizes, and when we explore the

possibility of approximating the turbulent state by truncating the summation over j in

Eq. (2) to a reduced number of modes.

C. Numerical implementation and benchmarking

We perform simulations of a KH-unstable sinusoidal E × B flow using the gyrokinetic

framework [36] as implemented in the Gene code [17, 18]. The gyrokinetic framework

applies to systems with a strong guide field, where the parallel length scale of fluctuations

is much larger than the perpendicular length scale, and the relevant frequencies are much

smaller than the ion cyclotron frequency. The use of gyrokinetics for this work is motivated

by Gene’s unique tools for performing eigenmode decompositions [19, 20]. We simulate a

system with two spatial dimensions, with a y-directed flow that varies sinusoidally in x, a

strong guide field in the z direction, and no variations in z. Our simulation domain is a

periodic box of dimensions Lx × Ly with no curvature or magnetic shear. The flow arises

from the E × B drift of the particles, allowing the electrostatic potential φ to serve as the

streamfunction for the flow. We model the plasma with gyrokinetic ions and electrons with
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hydrogen mass ratio, ion and electron background temperatures Ti = Te, no collisions, and

no electromagnetic fluctuations (plasma β = 0).

We drive instability with a potential and corresponding distribution function that vary

sinusoidally in x. Gene uses a δf formalism, where the full distribution function is sepa-

rated into equilibrium F0 and fluctuation f , with the code solving for the evolution of the

fluctuation. We let f(x, y, v‖, µ, s, t) and f̃(kx, ky, v‖, µ, s, t) denote the (guiding-center) dis-

tribution function for species s in real and Fourier space. For the remainder of this paper,

we will generally use notation that suppresses the species and velocity dependence of f , and

instead focus on its dependence on the spatial coordinates and time.

For benchmarking against previous work [21], the instability is first examined by im-

plementing the sinusoidal flow with low-amplitude white noise as an initial condition in

the fluctuation, formally evolving the system nonlinearly, with a homogeneous Maxwellian

equilibrium F0. This corresponds to solving the equation

∂f

∂t
=
{

f, φ̄
}

(5)

with a sinusoidal initial condition f(t = 0), φ(t = 0) ∼ sin(keq
x x) and low-amplitude noise to

seed instability. The only term on the right-hand side of Eq. (5),

{

f, φ̄
}

≡
∂f

∂x

∂φ̄

∂y
−

∂φ̄

∂x

∂f

∂y
, (6)

is the E × B nonlinearity, whose Fourier transform becomes
∑

k′x,k
′

y

(

k′
xky − kxk

′
y

) ˜̄φ(k′
x, k

′
y)f̃(kx − k′

x, ky − k′
y). Here, φ̄ is the gyro-averaged φ,

whose Fourier transform is given by ˜̄φ(kx, ky, µ, s) = J0(
√

k2
x + k2

yρ)φ̃(kx, ky), where J0 is a

Bessel function, and ρ is the gyroradius of species s with magnetic moment µ. The code

evolves f according to Eq. (5) and calculates φ using Gauss’s law as described in Refs. [37]

and [38]. The normalizations used by Gene are described in Ref. [37]; however, in this

paper we will follow the standard convention used in the fluids community and normalize

quantities with respect to the equilibrium flow velocity V0 and its wavelength keq
x , which

are normalized in the code by V = Vphysρrefcref/Lref and kx = kxphys/ρref.

Consistent with fluid theory, our system is unstable to perturbations of the same form

as Eq. (2) for a range of perturbation wavenumbers ky, with the growth rate scaling with

the base flow amplitude V0. Growth rates from this formally nonlinear setup are indicated

by crosses in Fig. 1. For direct comparison with previous work [21], the wavenumber of the
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0.0 0.2 0.4 0.6 0.8 1.0
ky/k

eq
x

0.0

0.1

0.2

0.3

γ
/k

eq x
V
0

Rogers 2005 (GS2)

Dedalus, Re = 400

Gene lin ky = 0.001

Gene lin ky = 0.05

Gene lin ky = 0.2

Gene NL ky = 0.05

Gene NL ky = 0.2

FIG. 1: Dispersion relation for the KH instability of a sinusoidal flow V = V0 cos(k
eq
x x)ŷ. Growth

rate γ is plotted against the wavenumber ky of the perturbation, with γ normalized to the equilib-

rium shear keqx V0 and ky to the equilibrium wavenumber keqx . Crosses are obtained from nonlinearly

evolving a perturbed sinusoidal flow in Gene according to Eq. (5), while dots are from solving the

linear Eq. (7). Results compare well with both previous gyrokinetic simulations (red curve, see

Ref. [21]) and hydrodynamic simulations of an equivalent system (magenta triangles). The sta-

bilization of the ky = 0.2 points at low ky/k
eq
x (i.e. high keqx ) can be attributed to finite Larmor

radius effects. All modes have zero real frequency.

equilibrium keq
x was varied at fixed ky, where perturbations are unstable for 0 < ky/k

eq
x < 1.

For this reason, in the remainder of this paper we focus our discussion on modes that lie in

this range.

As demonstrated in Fig. 1, nonlinear simulations with appropriate initial conditions can

be used to investigate some of the linear dynamics of this system, such as the growth rate

and mode structure of the most unstable mode at each ky. However, to solve for other linear

modes, which are known to exist in fluid models [6], terms corresponding to interaction

with the driving flow need to be implemented as a linear operator, so that Eq. (5) can be

linearized similarly to Eq. (3), in the form

∂f

∂t
= LKH[f ] (7)

for a linear differential operator LKH. To that end, we have implemented the linear operator

LKH in the Gene code. This allows computations to be performed with LKH[f ] on the
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right-hand side of the equation for ∂tf for

LKH[f ] ≡
{

f0, φ̄
}

+
{

f, φ̄0

}

, (8)

where φ0 is the electrostatic potential (streamfunction) for the sinusoidal base flow, and f0

is the self-consistent distribution function corresponding to φ0. Specifically, we use

f0(s) =
V0

keq
x

δkx,keqx − δkx,−keqx

2i
F0(s)

qs
Ts

J0
1− Γ0

Γ0
, (9)

where δkx,k′x is the Kronecker delta, F0(s), qs, and Ts are the equilibrium Maxwellian, charge,

and temperature of species s, and the Bessel functions J0 and Γ0 relate to finite Larmor

radius (FLR) effects as detailed in Refs. [37] and [38]. This form of f0 is used for secondary

instability tests in tokamak-relevant systems [39], and yields a sinusoidal φ0(x) corresponding

to a sinusoidal equilibrium flow in the y direction with amplitude V0 and wavenumber keq
x .

Note that LKH has x dependence but no y dependence, so its eigenmodes will have

Fourier dependence in y and more complex structure in x, similar to the hydrodynamic

case discussed in Sec. II. A. The dots in Fig. 1 are obtained by solving Eq. (7), and their

agreement with the corresponding crosses demonstrates successful implementation of the

linear drive. For both setups, convergence checks were performed in spatial and velocity

coordinates. Well-converged growth rates generally require 33 grid points in x, though far

fewer points were required for ky/k
eq
x . 0.5. For the remainder of this paper, results are

presented with V0 = 10 and keq
x = 0.1 using the linearized LKH. A convenient consequence

of these parameters is that times and frequencies have the same value when expressed in

standard Gene normalizations as they do in typical normalizations used in calculations of

unstable shear flow in the fluids community, where t is often measured in units of (keq
x V0)

−1.

Cyan triangles in Fig. 1 are obtained from solving the Orr-Sommerfeld equation with the

Dedalus code [40, 41] (where keq
x is the only length scale in the system) with a Reynolds

number Re = 400. Their agreement with the other curves supports the notion that kinetic

effects do not play a significant role in determining the growth rate of this mode. Crosses and

dots in Fig. 1 corresponding to lower values of ky show especially good agreement with the

fluid results. As each curve represents a fixed ky with varying keq
x , finite Larmor radius (FLR)

effects become more important as keq
x increases (i.e. as ky/k

eq
x decreases), suggesting that the

reduced growth rates in the ky = 0.2 simulations relative to the fluid results are due to FLR

effects. In non-periodic shear layers, such as V ∼ tanh(x), it is observed that FLR effects can
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be stabilizing or destabilizing depending on the alignment of the equilibrium vorticity and

magnetic field [3, 12]. Due to the sinusoidal nature of the flow studied here, the simulation

domain includes regions where vorticity and magnetic field are aligned and where they are

anti-aligned, suggesting that the FLR stabilization observed in our system is qualitatively

different from what is found in shear layers. We speculate that the FLR stabilization is due

to a reduction in the gyro-averaged potential φ̄, as φ̄/φ generally decreases with increasing

k.

D. Forcing and dissipation terms

In this paper, nonlinear calculations often include additional terms corresponding to

forcing and dissipation, which we introduce here. Hyperdissipation −D⊥(k
4
x + k4

y)f̃ [42] is

employed to provide small-scale dissipation in place of collisions, which are not expected to

sufficiently dissipate small-scale fluctuations at achievable resolutions within valid limits of

collision models. We note that our hyperdissipation term differs from what is more standard

in the fluids community, where k4
x + k4

y is replaced by (k2
x + k2

y)
2. A second dissipative term

−Dradf̃ is spatially uniform and sometimes referred to as radiative damping or friction [43].

It absorbs energy transferred to large scales [43, 44], while also serving as a “symmetry-

breaking” parameter that adjusts the relative growth rates of linear modes without modifying

their structure.

Finally, we introduce a Krook operator −DKrookδkx,±keqx δky ,0f̃ , where δi,j is the Kronecker

delta, to represent forcing of the unstable equilibrium and prevent it from decaying due

to turbulent fluctuations [33]. Aside from being linear in f and therefore not constant in

time, this is identical to the inhomogeneous body forcing used in studies of Kolmogorov

flow [22–24]. While the sign of the Krook operator seems to suggest that it removes energy

from the system, that is merely a consequence of our separation between equilibrium and

perturbation. As explained in Ref. [45], the kinetic energy of the full flow is E =
∫

|V +

v|2dxdy, so that if the (kx, ky) = (keq
x , 0) component of v opposes that of V and is not larger

in magnitude, as we will see to be the case in Sec. IV, terms that appear to dissipate the

“perturbation energy”
∫

|v|2dxdy at that wavenumber will actually increase the true energy

E.

Having constructed a linear operator that yields consistent results for the most unstable
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−0.2 0.0 0.2
γ/keqx V0

−0.50

−0.25

0.00

0.25

0.50

ω
/k

eq x
V
0

(a)

−0.2 0.0 0.2
γ/keqx V0

(b)

FIG. 2: Eigenvalue spectra for ky/k
eq
x = 2/3 with Lx = λeq (a) and Lx = 2λeq (b). With Lx = λeq,

at each unstable ky, the spectrum includes one unstable and one stable mode with equal and

opposite growth rate γ, as well as a continuous spectrum of marginal modes corresponding to

resonances between the phase velocity ω/ky and equilibrium flow [47]. As the box size is increased

to fit multiple wavelengths of the equilibrium, additional stable and unstable modes are introduced

[25, 27], and additional marginal eigenvalues appear due to an increase in number of values of

V0 cos(k
eq
x x) sampled by the extended grid (thus additional resonances with ω/ky).

eigenmode’s growth rate, we now address the rest of the spectrum of eigenvalues.

III. EIGENSPECTRUM

A. Subdominant modes

At each ky there exists a spectrum of eigenmodes f̂j and eigenvalues ωj, with correspond-

ing potential structures φ̂j . For 0 < ky/k
eq
x < 1, we let j = 1 denote the fastest-growing

mode. The KH instability has been investigated in gyrokinetics before, but previous calcula-

tions did not address linear modes other than f̂1 or their role in saturation. With the linear

operator LKH now implemented in Gene, its full spectrum of eigenmodes and eigenvalues

can be obtained [19, 20, 46]. Like the inviscid fluid analog, for each ky in the unstable

range there exist one unstable mode, one stable (damped) mode with equal and opposite

growth rate [6], and a continuum of marginally stable modes [47], shown in Fig. 2 (a) for
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ky/k
eq
x = 2/3. The additional degrees of freedom gained in gyrokinetics relative to a fluid

calculation, by taking into account the velocity-space structure of multiple species, increases

the rank of the discretized linear operator considerably, and leads to many more marginally

stable modes. A single point on the marginally stable continuum in Fig. 2 corresponds to

hundreds of eigenmodes (depending on velocity-space resolution), each with similar electro-

static potentials but significantly different velocity-space structure.

Despite the added degrees of freedom in gyrokinetics, there are still only one stable and

one unstable eigenmode per ky for 0 < ky/k
eq
x < 1 when the box size Lx equals the wavelength

of the equilibrium flow, denoted by λeq ≡ 2π/keq
x . Consistent with magnetohydrodynamic

(MHD) studies of a similar system [25, 27], we find that flows where multiple wavelengths of

the equilibrium are present (i.e. setting Lx = nλeq where n ≥ 2 is an integer) exhibit pairs

of subdominant unstable (0 < γj < γ1) and stable (γ2 < γj < 0) modes, shown in Fig. 2

(b). This means that simulations with larger boxes but with an equilibrium flow of the same

wavelength are expected to have different dynamics than simulations with Lx = λeq, as they

include additional modes through which LKH can inject or remove energy. In Sec. IV we will

demonstrate that including DKrook and Drad admits a system where, for sufficiently large

Lx, observables are converged with respect to a further increase in Lx.

As stated above, for each ky in 0 < ky/k
eq
x < 1, we let j = 1 refer to the dominant

unstable mode. We will further let j = 2 refer to the corresponding stable mode, and

j > 2 to all other modes. Figure 3 shows the x-dependence of φ̂1 at ky/k
eq
x = 1/2 alongside

the streamfunction for the equilibrium flow. Consistent with the fluid case [6, 13], we find

γ2 = −γ1 (such that both |γ1,2| are reduced by FLR effects), and φ̂2(x, ky) = φ̂∗
1(x, ky).

Accordingly, we refer to f2 as a conjugate stable mode.

Consistent with the fluid case discussed in Sec. II. B, the sinusoidal nature of the equi-

librium gives eigenmodes a discrete, comb-like structure in kx, where f̃j is zero at every kx

except for a countably infinite number of kx that are each separated by keq
x . All of the modes

whose eigenvalues are plotted in Fig. 2 (a), including f̃1 and f̃2, have nonzero amplitudes

at integer multiples of keq
x . Many of the additional modes gained in Fig. 2 (b) by extending

Lx to 2λeq, such as the modes with finite growth rate and real frequency, are nonzero at

half-integer multiples of keq
x . This implies that arbitrary linear combinations of the modes

in Fig. 2 (a) are only nonzero at integer multiples of keq
x .
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−0.4 −0.2 0.0 0.2 0.4

x/λeq

−1.0

−0.5

0.0

0.5

1.0
φ
/(
V
0
/k

eq x
)

φ0 = (V0/k
eq
x ) sin(keqx x)

Re(φ̂1)

Im(φ̂1)

FIG. 3: The equilibrium potential φ0 considered throughout this paper, which generates an E×B

flow along the y-axis that varies sinusoidally in the x direction with wavenumber keqx , alongside the

real and imaginary parts of the potential corresponding to the unstable eigenmode φ̂1(x, ky) plotted

with respect to x at ky/k
eq
x = 1/2. The stable eigenmode’s potential is the complex conjugate of

the unstable eigenmode’s potential, φ̂2 = φ̂∗
1.

B. Forcing and dissipation effects

The additional physics effects introduced in Sec. II. D each modify the eigenmodes to

varying degrees. The Krook operator enters the Vlasov equation only at ky = 0, so it

has no impact on the ky > 0 eigenmode spectra. The radiative damping term reduces

the growth rate of every eigenmode by Drad without changing the mode structure. The

hyperdissipation term has a more significant impact on the spectrum. It reduces the growth

rate of the unstable mode with minor modifications to its structure, and replaces both the

stable mode and marginal continuum with a set of damped modes that does not include any

mode resembling the conjugate stable mode.

We now turn our attention the nonlinear saturation of this system.
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FIG. 4: Left: Nonlinear simulations with dissipation quasilinearly flatten, then decay. Quasilin-

ear flattening is measured by investigating φ̃ at (kx, ky) = (±keqx , 0). The perturbation cancels

the drive once φ̃(keqx , 0) (blue) reaches a magnitude of 0.5V0/k
eq
x (black dashed line). Linearly

unstable Fourier modes then turbulently decay over time. Right: Introducing a Krook opera-

tor (DKrook/(k
eq
x V0) = 1 here) partially suppresses the Fourier mode responsible for quasilinear

flattening, driving the system and leading to a quasi-stationary state of driven turbulence.

IV. INSTABILITY SATURATION

A. Saturation and decaying turbulence

To investigate the saturation of this instability, we include in Eq. (7) the full E × B

nonlinearity, yielding
∂f

∂t
= LKH[f ] +

{

f, φ̄
}

. (10)

Owing to the way in which the linear drive terms were derived and implemented, the evo-

lution of Eq. (10) with some initial condition finit is identical to the evolution of Eq. (5)

with the initial condition f0 + finit, presuming no dissipation or drive is included. When

dissipation terms are added to Eq. (10), they do not act on f0, unlike those in Eq. (5).

As the system evolves according to Eq. (10), the nonlinearity transfers energy across a

range of scales, but with zero energy injection and nonzero dissipation, the initial energy
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FIG. 5: Contours of the full (equilibrium and fluctuation) electrostatic potential for a nonlinear

simulation with DKrook = 0. From left to right, plots correspond to t(keqx V0) ≈ 46, 101, and 502.

Center and right plots show the tendency for small-scale fluctuations to dissipate, leaving coherent

vortices that merge to progressively larger scales.

eventually decays away. In terms of saturation of a linear instability, this can be understood

as quasilinear flattening, where the fluctuations reduce mean gradients until the system is

linearly stable. This is observed in simulations of Eq. (10) with added hyperdissipation, as

shown in Figs. 4 and 5. Once unstable wavenumbers reach a sufficient amplitude, fluctuations

at the wavenumbers of the equilibrium flow, i.e. (kx, ky) = (±keq
x , 0), quickly grow to offset

the unstable profile of the mean flow. From this point the system exhibits features of

decaying turbulence: the dynamics are highly intermittent, with long periods of coherent

behavior punctuated by the merging of vortices. This is consistent with previous 2D KH

simulations [3], and can be expected given the lack of external forcing; the linear drive

in Eq. (10) appears similar to an external forcing term, but as argued in the preceding

paragraph, that is merely a consequence of the formal separation between the equilibrium

and fluctuations.

B. Driven turbulence

In many physical systems where shear-flow instability saturation and turbulence are of

interest, the unstable shear flow is not some ideal initial condition but is brought about by

a separate process. Examples include shear flows driven by boundary conditions [48], drift-

wave instabilities [4, 21] in laboratory experiments, and jets, gravity, or another instability
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FIG. 6: Contours of the full (equilibrium and fluctuation) electrostatic potential for a nonlinear

simulation with DKrook/(k
eq
x V0) = 1 and Drad/(k

eq
x V0) = 0.05. From left to right, plots correspond

to t(keqx V0) ≈ 46, 102, and 501. Comparing with Fig. 5 shows the system no longer tends towards

large-scale coherent vortices with gradual decay of energy. Instead, multiple scales are excited and

form a quasi-stationary state.

[25] in astrophysical systems. We include a Krook operator, introduced in Sec. II, with the

intent of capturing some of the effects of such continual forcing but without modeling the

subtleties of any particular system where forcing produces a shear flow.

The result of including the Krook operator is readily seen in Figs. 4 and 6. When the

Krook operator is added to Eq. (10), it suppresses the tendency for the (kx, ky) = (±keq
x , 0)

component of the fluctuation to cancel out f0, thereby injecting energy into the system by

reinforcing the unstable equilibrium. This in turn drives other Fourier modes via the KH

instability, as is seen in the timetrace of φ̃(keq
x , 0), shown in Fig. 4: the (kx, ky) = (±keq

x , 0)

component no longer reaches the amplitude necessary to cancel out the driving shear flow,

and other Fourier modes no longer decay over time, leading to a quasi-stationary state of

driven turbulence where the energy injected by the Krook drive is balanced by energy dissi-

pation. As DKrook increases, the saturated amplitude of φ̃(±keq
x , 0) decreases, corresponding

to an overall increase in φ̃0 + φ̃(±keq
x , 0). The dominant balance that determines the ampli-

tude of φ̃(±keq
x , 0) in saturation is between the Krook drive and the Reynolds stress, which

we explore further in Sec. IV. C.

Also observed in Fig. 5 is the tendency for the system to form coherent vortices that

gradually merge to the largest scale allowed by the simulation domain. This behavior is

also observed in 2D shear layer simulations [3], and is consistent with the inverse energy
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cascade to large scales in 2D hydrodynamics. The inverse cascade leads to a system with

saturation properties that change as the box size is increased. The radiative damping term

Drad introduced in Sec. II damps low-k fluctuations, preventing energy from continuously

building up at the largest scales, and thereby allowing fluctuation spectra to reach a sta-

tionary condition at low k. For this reason, and for the sake of presenting simulations where

observables are converged with respect to the box size, the majority of our simulations were

run with Lx = 12λeq and Drad = 0.05, a rate that is roughly 20% of the maximum linear

growth rate in the dissipationless case. Figure 6 shows the results of a simulation with these

parameters and DKrook = 1. In contrast with Fig. 5, the system exhibits multiple excited

scales in a quasi-stationary saturated state, providing the type of turbulence desired for

studying momentum transport and eigenmode excitation.

C. Momentum transport

We investigate the momentum transport driven by turbulent fluctuations in this system,

examining the xy component of the Reynolds stress tensor, denoted as τ . From the average

of the product of the x and y components of the fluctuating E×B flow in the homogeneous

y direction,

τ ≡

〈

−
∂φ

∂x

∂φ

∂y

〉

y

, (11)

where 〈A〉q denotes an average of some quantity A over a domain in the variable q. Due to

the sinusoidal variation in x of the equilibrium, τ changes sign along the x axis as the sign

of the equilibrium flow changes, an expected feature of Kolmogorov flow [23].

In nonlinear gyrokinetic simulations, numerical convergence is typically tested by mea-

suring changes of some scalar, time-averaged transport quantity with numerical parameters

such as resolution and domain size. Due to the changes in sign of τ , the average of τ in

the x direction and time, 〈τ〉x,t, is not appropriate for testing numerical convergence be-

cause it is typically 0. Instead, we calculate the root-mean-square (RMS) of τ , i.e.,
√

〈τ 2〉x,

and compare the time-average in the quasi-stationary state as resolution changes. For the

simulation shown in Fig. 6, the time-averaged τRMS in saturation changes by at most 2%

when any spatial or velocity coordinate’s domain size or resolution is doubled except Lx

(expected due to the subdominant unstable modes and inverse cascade), where it changes

by 9%. Therefore, despite creating additional unstable and stable eigenmodes as box size is
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FIG. 7: Comparison between average Krook drive amplitude |〈φ̃(±keqx , 0)〉t|DKrook and the average

amplitude of the corresponding Fourier component of the Reynolds stress τ in saturation across

a range of driving frequencies DKrook. Other simulation parameters are the same as in Fig. 6.

In the saturated state, the mean flow is governed by a competition between the external forcing

and the turbulent Reynolds stress. A small contribution is made by the influence of dissipation

on φ̃(±keqx , 0), evidenced by the minor mismatch between the two curves at the lowest values of

DKrook.

increased, this simulation is numerically converged in Lx with regards to τRMS.

Consistent with studies of Kolmogorov flow (where a constant force is typically used,

while our forcing is proportional to f̃(keq
x , 0)) [23], we find that as the forcing increases, both

the mean flow velocity and the Reynolds stress increase, such that at saturation the two are

in balance. This is shown in Fig. 7, where the force on the mean flow applied by DKrook

is seen to balance the force due to τ . This can also be seen by considering the effect of a

similar Krook operator on Eq. (1). When Eq. (1) is Fourier transformed in both x and y,

our forcing term appears as DKrookδkx,±keqx δky,0(k
2
x + k2

y)φ̃. The (kx, ky) = (keq
x , 0) component

of the equation then becomes

∂

∂t
φ̃(keq

x , 0) +
∑

k′

k′
y

keq
x

[

(keq
x − k′

x)
2 + k′2

y

]

φ̃(k′
x, k

′
y)φ̃(k

eq
x − k′

x,−k′
y) = −DKrookφ̃(k

eq
x , 0), (12)

where the nonlinear term is the kx = keq
x component of the Fourier-transformed Reynolds

stress τ̃ . For a quasi-stationary, saturated state, the time-average of Eq. (12) yields a

balance between the Reynolds stress and the DKrook term. Figure 7 compares these terms

for a range of simulations with different values of DKrook, demonstrating good agreement

with expectations. A small mismatch occurs because the effect of dissipation on the flow
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makes a small contribution to the force balance, but the other forces are clearly dominant.

Because we only include dissipation on the fluctuation, not the equilibrium φ0 which is

independent of DKrook, this contribution decreases as DKrook increases.

V. EIGENMODE ANALYSIS

A. Eigenmode Expansion

We investigate the role of stable modes in this system by expanding the turbulent state in

a basis of the eigenmodes of the dissipationless operator LKH. We expand in eigenmodes of

the dissipationless operator to focus on the role played by f2, which vanishes in the dissipative

system. This also allows for comparison with previous work [13], where the dissipationless

modes were considered.

As discussed in Sec. III, the operator LKH has a distinct set of Nev eigenmodes {f̂j} for

each value of ky. Therefore, an expansion of an arbitrary state f(s, x, y, v‖, µ) in a basis of

eigenmodes f̂j may be written as

f(s, x, y, v‖, µ) =
∑

ky

Nev
∑

j=1

βj(ky)f̂j(s, x, ky, v‖, µ)e
ikyy. (13)

As in Sec. III, the index j is a positive integer that enumerates the eigenmodes at a given

ky, and for 0 < ky/k
eq
x < 1, j = 1 and j = 2 label the most unstable mode and its stable

conjugate, respectively. The number of eigenmodes Nev obtained by the eigenmode solver

is equal to the number of degrees of freedom in the discrete numerical representation, i.e.,

the product of the number of grid points and the number of species, and the modes were

verified to be linearly independent, so expansions of this form exist and are unique assuming

the numerical resolutions of both sides of Eq. (13) are identical. Figure 8 shows timetraces

of |β1| and |β2|, as well as the time-averaged |βj| in saturation for every j at ky/k
eq
x = 0.25

for the same simulation shown in Fig. 6.

The values βj , which we refer to as the amplitudes of each eigenmode, can be understood

as coordinates or components of f in the basis {fj}. When such an expansion is performed

at multiple time steps of a given simulation so that f is a function of time, each βj becomes

a function of time that indicates the relative contribution of eigenmode fj to the state of the

system over time. In linear simulations, βj(ky, t) = βj(ky, 0)e
iωjt for each j and ky. Previous
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FIG. 8: Left: Amplitudes of the unstable and stable eigenmodes, |β1| and |β2|, respectively, as

functions of time on a logarithmic scale (top, horizontal axis reduced to highlight the parametric

growth of |β2|) and a linear scale (bottom) at horizontal wavenumber ky/k
eq
x = 0.25 for the simu-

lation with DKrook = 1, Drad = 0.05, and D⊥ = 1.6. Right: Full spectrum of eigenvalues ωj (real

part ωr on y-axis, growth rate γ on x-axis), with color indicating time-averaged (starting from

t = 300) amplitudes 〈|βj |〉, and dot size scaled proportionally to allow multiple |βj | with the same

ωj to be shown. The decay of β2 is followed by nonlinear growth much faster than β1, while β1

continues its linear growth, consistent with Ref. [13]. The remarkable similarity of the values of

|β1| and |β2| in the saturated state was predicted in Ref. [13]. Results are qualitatively similar for

other unstable ky.

work showed how β1 and β2 interact nonlinearly in a fluid system, derived equations for

∂βj/∂t by inserting expansions of the form Eq. (13) into the governing equations of the

system, and compared the relative sizes of different terms leading into instability saturation

[13, 49, 50]. Here we directly calculate the evolution of each βj over time in nonlinear

simulations, extending analysis beyond the onset of saturation. Our procedure for calculating

each βj relies on the left eigenmodes of LKH and is described in Refs. [19, 20].

Similar analyses have been performed for gyroradius-scale instabilities in reduced fluid

models [50], and gyrokinetic models [19, 51]. These eigenmode expansions are related to the
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“projections” calculated in related work [16, 51, 52], defined as

pj =

∣

∣

∣

∣

∣

∫

dxdv
∑

s

f ∗
j fNL

∣

∣

∣

∣

∣

(

∫

dxdv
∑

s

|fj|
2

∫

dxdv
∑

s

|fNL|
2

)−1/2

(14)

(where fNL is the nonlinearly-evolved distribution function, and the summations are over

each species), but the two are generally quite different. Identifying 〈g, h〉 ≡
∫

dxdvg∗h as

an inner product on the space of distribution functions f , projections pj are inner products

normalized by the lengths of fj and f so that pj = 0 if they are orthogonal (under this

inner product) and pj = 1 if they are parallel. The eigenvectors of an arbitrary linear

operator are not guaranteed to be mutually orthogonal under a given inner product (we

have verified that the eigenmodes of our system are not mutually orthogonal under the

above inner product), which leads to the possibility that the projection onto one eigenvector

depends on the amplitudes of every eigenvector. For example, one could find that the

projection pj onto a stable mode counterintuitively grows over time in a linear simulation

due to nonorthogonality, even though the amplitude βj of the stable mode decays. Likewise,

if the projection onto a stable mode is large in the saturated state, it is not immediately clear

whether this is due to a large stable mode amplitude, significant nonorthogonality with the

dominant unstable mode, or even due to nonorthogonality with an entirely different mode

that has a large amplitude. This situation is avoided if the linear operator has mutually

orthogonal eigenvectors (e.g. if it is Hermitian), if the set of modes fj are replaced by an

orthogonal set, such as from a proper orthogonal decomposition [19], or by applying an

orthogonalization procedure like Gram-Schmidt [51]. However, the relationship between the

eigenmode amplitudes and the orthogonalized mode amplitudes is not immediately clear.

We focus our attention on the eigenmode amplitudes βj rather than projections p because

linear energy transfer due to LKH is directly related to βj , not p [49], and to facilitate

comparison with Ref. [13].

For the simulation shown in Fig. 6, we use the parameters Lx = 12λeq, DKrook = 1, Drad =

0.05, and D⊥ = 1.6, with 512 grid points in the x direction. Calculating every eigenmode

of the system at that resolution is prohibitively expensive. Instead, to generate Fig. 8 we

perform eigenvalue computations with Lx = λeq. Due to the discrete, comb-like eigenmode

structure in kx discussed in Secs. II. B and III. B, this reduced set of modes does not describe

the full state of Eq. (13) because it lacks modes obtained when Lx > λeq [see Fig. 2]. But

this does allow for a full expansion of the components of f̃(kx, ky) given by kx = nkeq
x for
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integer n, and this does not affect the obtained values of β1 and β2.

Consistent with analytical calculations and reduced models [13, 49, 50], Fig. 8 shows

that |β2| decays before being nonlinearly driven at a rate faster than the unstable mode’s

concurrent exponential growth. We stress that the evolution of |β2| is remarkably consistent

with the inviscid fluid problem [13] despite the influence of nonzero D⊥ in the nonlinear

simulation, which modifies the structure of f1 and eliminates the conjugate stable mode f2

from the eigenmode spectrum of the dissipative operator. A similar observation was made in

studies of ITG pseudospectra, where a similar conjugate stable mode vanished in the dissi-

pative case, but was nonetheless a part of the pseudospectrum and was significantly excited

in saturation [53]. Figure 8 only shows amplitudes for the ky/k
eq
x = 0.25 eigenmodes, but

every other ky in 0 < ky/k
eq
x < 1 exhibits similar results. The amplitude of f2 in saturation

nearly matches that of f1 both at saturation onset and for the rest of the simulation. Since

the two modes are nearly conjugate symmetric, this suggests that the linear energy dissipa-

tion due to f2 is a significant fraction of the linear energy injection due to f1 at the onset

of saturation and throughout the quasi-stationary state. This suggests that the predictive

capabilities of the threshold parameter Pt analysis studied in Refs. [49, 50] carry over to

systems more general than plasma microturbulence, and that a significant amount of the

energy transferred to ky > 0 fluctuations via LKH makes its way back into the mean flow

rather than smaller scales.

B. Truncated eigenmode expansions

In turbulence models, it is common practice to separate the flow into mean and fluctuating

parts. If there is further separation between large and small scale structures, the former are

often approximated by the most unstable eigenmode [7, 9, 10]. Here we demonstrate the

potential for improving such models by including the stable mode in the approximation for

the large scales.

Figure 9 compares part of the flow structure at t ≈ 501(V0k
eq
x )−1 to three different expan-

sions. The top-left contours show the electrostatic potential φ for the simulation described

in Fig. 8. To focus on the components of φ where the eigenmodes discussed in Figs. 1 and

2 can be used to approximate the flow, a filtering procedure has been applied in Fig. 9 to

remove all but a subset of Fourier components (kx, ky) have been artificially removed. Only
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FIG. 9: Comparison between the components of φ that are spanned by the eigenmodes in Fig. 8 (top

left), a summation over all of the eigenmodes in Fig. 8 at every unstable ky (top right), summation

over just the most unstable mode at every unstable ky (bottom left), and summation over the most

unstable and conjugate stable mode at every unstable ky (bottom right) at t ≈ 501(V0k
eq
x )−1 for the

same simulation as Fig. 6. Due to only integer multiples of keqx contributing to these eigenmodes,

they are unable to effectively reproduce the full flow profile, plotted in Fig. 6. However, those

components of φ that can be expressed as a linear combination of the eigenmodes in Fig. 8 are

very well-described even by just the unstable φ1 and stable φ2.

ky in 0 < ky/k
eq
x < 1 are included, and only kx = nkeq

x for integer n are included. This allows

the eigenmodes in Fig. 8, and the equivalent eigenmodes at other unstable ky, to be used as

a basis in the sense of Eq. (13). The top-right contours show the φ structure obtained from

summing over these eigenmodes at each unstable ky, verifying that they indeed serve as a

basis. The excellent agreement helps demonstrate that the wavenumber filtering only affects

the amplitudes βj of eigenmodes that arise from having Lx > λeq, and fully captures the

structure and amplitudes of the Lx = λeq eigenmodes. Extremely minor differences between
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FIG. 10: Error in φ of each of the eigenmode expansions of Fig. 9 relative to the filtered nonlinear

data. Including φ2 significantly improves fluctuation estimates in the quasi-stationary state.

the top-left and top-right contours arise due to the higher x resolution in the nonlinear

simulation than in the linear eigenmode calculations. To investigate the differences between

these large-scale flows and the results of approximating them using just the unstable mode,

the bottom-left contours show the result of excluding every eigenmode in Eq. (13) except the

most unstable at each ky, as is often done in reduced models. The bottom-right contours are

obtained similarly, but both the most unstable mode φ1 and the conjugate stable mode φ2

at each ky are included. Including φ2 produces a flow structure that is remarkably similar to

the top-left and top-right flow structures, unlike what one obtains when only φ1 is included.

Unsurprisingly, the more accurate flow structure leads to a more accurate Reynolds stress

(not shown).

To compare the efficacy of these three eigenmode expansions over time, rather than the

one timestep shown in Fig. 9, we calculate the error error = ||φ −
∑

j βjφj||/||φ|| of each

relative to the filtered nonlinear data (the top-left plot in Fig. 9). Here φ refers to the filtered

nonlinear φ, and ||.|| is the standard L2 norm. Due to differences in x resolution, the full

expansion (in green) has minor errors that decay away as the simulation progresses. Errors

in both the unstable-only expansion (blue) and the combined unstable-stable expansion

(orange) start large due to choice of initial condition, gradually decay as the most unstable

mode grows in the linear phase, and peak at the onset of saturation before fluctuating about
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FIG. 11: Time-averaged ratio of unstable mode amplitude to stable mode amplitude in saturation

at each ky for a range of Drad with DKrook = 1. The growth rate dependence of the Pt analysis

[35, 49, 50] suggests that higher Drad causes β2 to be driven less leading into saturation. Here we

see that this is reflected in the eigenmode amplitudes in the saturated state. The ky dependence

of the ratio |β1/β2| roughly follows that of γ1.

an average value in the quasi-stationary state, with the inclusion of the stable mode reducing

the average error in the saturated state by a factor of three.

C. Influence of forcing and dissipation

Figure 8 shows significant excitation of the stable mode in the saturated state for a

simulation with DKrook = 1, Drad = 0.05, and D⊥ = 1.6, with Figs. 9 and 10 demonstrating

its importance in describing the large-scale fluctuations in φ. To investigate the role of these

parameters in determining the influence of stable modes in saturation, we vary them between

different simulations. In particular, we pay close attention to the relative amplitudes of β1

and β2 as Drad and DKrook are varied. Because Drad is a symmetry-breaking term in the sense

that it decreases the growth rate of f1 and increases the damping of f2 without changing

their mode structures, it reduces the parametric driving of f2 by f1. (The parametric

driving of f2 by f1 depends on their mode structures, the form of the nonlinearity, and γ2/γ1

[13, 35, 49, 50]. Of those, only γ2/γ1 is affected by Drad, making its influence on |β1/β2|

more transparent.) Figure 11 shows that this leads to significantly smaller |β2| relative to
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FIG. 12: Time-averaged ratio of unstable to stable mode amplitude in saturation at each ky for

a range of DKrook. Between DKrook = 0.5 and 4, increasing DKrook generally pushes the ratio of

amplitudes closer to unity. Above DKrook = 4, increasing DKrook has a less pronounced impact on

the ratio. We stress that, in both regimes, the mean flow amplitude and Reynolds stress increase

with DKrook.

|β1| in the saturated state. This also suggests that for unstable shear flow in systems without

radiative damping |β2| ≈ |β1| is expected, consistent with Ref. [13]. The ky dependence of

the ratio |β1/β2| roughly follows that of γ1, except that it approaches 1, rather than 0, at

ky = 0 and ky = keq
x .

Figure 12 shows how the time-averaged large-scale values of |β2/β2| in saturation vary

with DKrook. The shape of the curves remains fairly consistent as DKrook changes. Two

regimes are apparent: below DKrook = 4, increasing DKrook drives the ratio |β1/β2| closer

to unity, while above DKrook = 4 the ratio is significantly less affected. This behavior is

consistent with the notion that reinforcement of the unstable profile by larger DKrook allows

β2 to be nonlinearly pumped to its maximal level, whereas for smaller DKrook the quasilinear

depletion of the profile cuts off the pumping of β2 before it reaches its maximal level. Note

that f2 tends to reduce the Reynolds stress τ , suggesting that the increase in τ with DKrook

must be due to an increase in overall fluctuation level, rather than a change in |β1/β2|.
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D. Influence of stable modes in analytical models

To better understand how the unstable and stable modes affect the mean flow in satu-

ration, we develop a reduced model that expresses the mean flow amplitude in terms of β1

and β2. The model considers a 2D inviscid, incompressible fluid, assumes φ ≈ β1φ1 + β2φ2

for 0 < ky/k
eq
x < 1, and assumes that the force applied by the Krook operator balances the

turbulent Reynolds stress in saturation. These assumptions are consistent with the findings

presented in Figs. 7 and 9.

For perturbations about a sinusoidal equilibrium flow, the linearized system becomes

Eq. (4), which was derived in Sec. II but is repeated here:

ωj(k
2
x + k2

y)φ̃j +
kyV0

2

[

(k2
x − 2kxk

eq
x + k2

y)φ̃
−
j + (k2

x + 2kxk
eq
x + k2

y)φ̃
+
j

]

= 0.

Equation (4) can be expressed as a matrix equation ωj
~φj +M~φj = 0 where the components

of ~φj are φ̃j at different kx and the dimension of φ̃j and M is infinite. Reasonable approxi-

mations of the eigenmodes and eigenvalues can be obtained by solving the matrix equation

with φ̃j 6= 0 for some finite number of kx values, and φ̃j = 0 for all other kx. This has pre-

viously been found useful in similar KH and tearing mode calculations [28]. For example,

solving the system with kx = 0,±keq
x yields

ω1 = −
ikyV0

κ
~φ1 = (1,−iκ, 1)T

ω2 =
ikyV0

κ
~φ2 = (1, iκ, 1)T

ω3 = 0 ~φ3 = (−1, 0, 1)T ,

where the vectors are written in the form (φ̃(−keq
x ), φ̃(0), φ̃(keq

x ))T and κ(ky) ≡
√

2((keq
x )2 + k2

y)/((k
eq
x )2 − k2

y).

To arrive at an expression of force balance between the Reynolds stress and Krook drive,

we return to Eq. (12), which we repeat here:

∂

∂t
φ̃(keq

x , 0) +
∑

k′

k′
y

keq
x
((keq

x − k′
x)

2 + k′2
y )φ̃(k

′
x, k

′
y)φ̃(k

eq
x − k′

x,−k′
y) = −DKrookφ̃(k

eq
x , 0).

Considering a steady state where ∂φ̃(keq
x , 0)/∂t = 0, and assuming φ̃ = β1φ̃1 + β2φ̃2 with

just the kx = 0,±keq
x Fourier modes considered, Eq. (12) can be manipulated to yield

φ̃(keq
x , 0) =

2ikeq
x

DKrook

∑

k′y>0

k′
yκ(k

′
y)
(

|β1|
2 − |β2|

2
)

. (15)
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FIG. 13: A comparison between the true value of |φ(keqx , 0)| (blue dots) and values predicted by

Eq. (15) with (orange diamonds) and without (green crosses) the stable mode contribution β2

included over multiple values of DKrook and Drad. In each frame, the models are scaled by a

constant coefficient to match the true value at DKrook = 4 so that the scaling with DKrook can be

investigated, rather than the absolute agreement. For the base case Drad = 0.05 (center frame), the

scaling of |φ(keqx , 0)| with DKrook is qualitatively captured by the model with β2 neglected, however

the scaling is significantly improved when stable modes are included. For the larger value of Drad

(right frame), where stable modes are largely suppressed in saturation (c.f. Fig. 11), including β2 in

the model produces little change, and decent quantitative agreement is observed by the model both

with and without β2 included. For the smaller value of Drad (left frame), where stable modes are

more important, the model fails to even qualitatively agree with simulations unless β2 is included,

in which case the overall trend is captured.

From here, values for |β1| and |β2| can be inserted to arrive at values for the mean flow

amplitude. In other systems, |βj| have been calculated using statistical closures [15, 54, 55].

Extending the above approach with such a calculation would yield a complete model, but

is outside the scope of this paper. Instead, we insert values of |β1| and |β2| from nonlinear

simulations into Eq. (15). Our interest is in the scaling of φ̃(keq
x , 0) with DKrook, and what

role β2 plays in that scaling. Thus, we perform simulations with a range of DKrook and

compare three quantities: the time-averaged value of φ̃(keq
x , 0) in saturation, the result of

Eq. (15) using both β1 and β2, and the result obtained when β2 = 0 is assumed. In Fig. 13,

this comparison is made for three values ofDrad, corresponding to three systems with varying

degrees of stable mode excitation (recall stable modes are more excited at lower values of

Drad, see Fig. 11). ForDrad = 0.05, where stable modes were shown in Fig. 8 to be significant,
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the β2 = 0 model is qualitatively correct, but significantly improved when β2 is properly

included. For Drad = 0.025, where stable modes are even more important, the β2 = 0 model

fails to even capture the decrease in |φ̃(keq
x , 0)| with DKrook, while the model that includes

β2 does capture the correct qualitative and often even quantitative behavior. At Drad = 0.1,

where stable modes are significantly weakened, their inclusion does not have a significant

impact on the model. For each value of Drad, the two models are scaled by a constant so that

they agree with the simulation results at DKrook = 4, which is where the change in scaling

with respect to DKrook was noted in Fig. 12. (It is the scaling properties of the models that

we are assessing, not the absolute values.) Note that this model neglects all eigenmodes

except φ1 and φ2, including the modes with nonzero kx at noninteger multiples of keq
x .

Comparing the two models at different values of Drad demonstrates that when stable

modes are excited in this system as in Fig. 8, they not only modify the shape of the flow,

as shown in Fig. 9, but have an important impact on how the system responds to forcing.

By nonlinearly transferring energy into large-scale stable modes, the fluctuating flow adjusts

in a way that changes the feedback onto the large-scale mean flow, thus affecting how the

system is forced. We also note that Eq. (15) was derived assuming an inviscid fluid, while the

inserted values for |β1| and |β2| were obtained from gyrokinetic simulations with finite D⊥,

suggesting gyrokinetic effects may not play a significant role in the eigenmode excitations

and force balance in this system.

VI. CONCLUSIONS

We have studied an unstable gyrokinetic shear flow, finding that the system includes a

conjugate stable eigenmode that is nonlinearly driven to a large amplitude leading into sat-

uration, and continues to make important contributions to the Reynolds stress in the quasi-

stationary turbulent state, except at high values of radiative damping. This demonstrates

that previous findings on the role of stable eigenmodes in shear-flow instability saturation of

a fluid shear layer are consistent with the quasi-stationary turbulent state of a gyrokinetic

periodic shear flow. Furthermore, our results point to the potential for reduced models of

shear-driven turbulence to be significantly improved by including stable mode physics.

We have investigated the saturation of a linearly unstable E×B shear flow in gyrokinetics

as it relates to the full eigenmode spectrum. We find that the gyrokinetic system compares
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well with its hydrodynamic counterpart with regards to the unstable mode, as well as the rest

of the spectrum. Specifically, the dissipationless linear operator includes a single conjugate

stable eigenmode for every unstable eigenmode, along with a continuum of marginally stable

modes. Nonlinear simulations characterize the behavior of the flow in saturation, and we

examine cases both with and without an external driving term. The drive is implemented

in the form of a Krook operator, and reinforces the unstable mean flow in a manner similar

to Kolmogorov flow.

In simulations without the drive term, the system lacks any energy injection to maintain

the unstable equilibrium. This causes fluctuations to quickly relax the unstable flow shear

once nonlinear interactions become significant, and the turbulence subsequently decays.

In simulations with forcing, we include a scale-independent radiative damping term that

prevents accumulation of energy at the largest scales, and allows a quasi-stationary state

of driven turbulence. In driven simulations, a partial relaxation of the mean flow is still

observed, with the final state mostly determined by a force balance between the Krook

drive and the turbulent Reynolds stress.

With a well-resolved system of quasi-stationary, driven turbulence, we investigate the

role of different linear eigenmodes by performing an eigenvalue decomposition, where the

turbulent state is expressed as a linear combination of the eigenmodes. The evolution of

the dominant pair of stable and unstable modes leading into saturation compares well with

previous analytic calculations of an inviscid fluid shear layer [13], and the ensuing excitation

of the stable mode in the turbulent state is broadly consistent with previous findings in

plasma microturbulence [50]. By demonstrating that the role of stable modes in shear-flow

instability saturation is consistent with their role in the fully-developed turbulent system,

we have extended the set of systems in which instability saturation analyses has proven to be

predictive of the turbulent state to include fully global fluid instabilities, further motivating

these sorts of analyses in other global instabilities where stable modes exist, such as the

magnetorotational instability [56].

The significant excitation of linearly stable modes in the saturated state indicates that

an important aspect of shear-driven turbulence is this previously-neglected tendency for

large-scale fluctuations to lose energy back into the mean flow via the linear operator. This

idea is in contrast with the standard picture of instability-driven turbulence, where it is

assumed that the largest scales are dominated by a balance between linear energy injection
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and nonlinearly energy transfer to smaller scales. While many other modes are also excited

in the saturated state, we have shown that the stable/unstable pair of modes is sufficient

to capture many aspects of the flow. This also presents a significant modification to the

existing understanding of shear-driven turbulence, where reduced models generally assume

that large-scale fluctuations are dominated by unstable modes alone [7, 9–11].

Consistent with previous work where the conjugate symmetry between unstable/stable

pairs of modes was broken with dissipative terms [35], we find that the added radiative

damping term, which increases the damping rate of the stable mode and reduces the growth

rate of the unstable mode, suppresses the importance of the stable mode relative to the

unstable one. This is observed by comparing the amplitudes of the two modes for a range

of radiative damping values. Making use of the observations that the gyrokinetic and fluid

systems behave similarly, that the mean flow amplitude at saturation is determined by

force balance between driving and Reynolds stress, and that the stable and unstable modes

alone describe large-scale fluctuations well, we construct a reduced model that allows us

to examine the role of stable modes in determining the mean flow in saturation. The

model results in an equation where the contributions from stable modes can be isolated

from unstable modes. We find that lower values of radiative damping, where stable modes

exhibit higher amplitudes, require the inclusion of stable modes in the model in order for

it to be even qualitatively correct. At higher radiative damping, where stable modes are

suppressed, their inclusion in the model has no significant impact on its performance. Thus,

in shear-flow systems where stable modes play an important role in instability saturation,

they may also be expected to play an important role in understanding how fluctuations

affect the mean flow, and thus how the system responds to external forcing. We further

conclude that when effects observed to change turbulence characteristics also break the

conjugate symmetry of an unstable/stable eigenmode pair [8], the change in turbulence may

be related to differences in stable mode excitation.
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