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Abstract

A flow in which two fluids slide by one another or two layers of a single fluid flow at different

speeds is called a shear flow. These flows are of interest in a broad range of physical

systems, including atmospheric and astrophysical ones. Their potential to be unstable,

with small perturbations growing by feeding off the flow’s kinetic energy, motivates their

study. Particularly in astrophysical systems, these instabilities often drive turbulence that

dramatically modifies the rate at which heat, particles, and momentum are transported

across the flow. This thesis studies the nature of these instabilities and the ensuing

turbulence, investigating the canonical shear-flow instability, the Kelvin-Helmholtz (KH)

instability, in three systems. Specifically, large-scale stable modes are explored, which

transfer energy from perturbations back to the shear flow and tend to decay in time, in

contrast to unstable modes which take energy away from the flow and tend to grow.

In systems where stable modes were investigated prior to this work, the same

nonlinear interactions that transfer energy from large to small scales were shown to

transfer energy from unstable to stable modes. Thus, they can potentially reach significant

amplitudes despite their tendency to decay in the absence of nonlinear interactions. At

large amplitudes, the energy sink they present can significantly modify the turbulent state,

and accounting for them can significantly improve reduced models of turbulent transport.

These prior studies all concerned plasma micro-instabilities or systems that were otherwise

quasi-homogeneous. The KH instability is importantly macroscopic and inhomogeneous.
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Thus, this thesis presents a significant expansion to the set of systems in which stable

modes have been investigated.

Three studies are described in this thesis. Each study concerns a different flow

configuration and a different set of physical effects: a piecewise-linear, fixed shear layer

in hydrodynamics, a reinforced, sinusoidal shear flow in gyrokinetics, and a smooth, freely-

evolving shear layer in MHD. It is shown that stable modes are nonlinearly coupled to

unstable modes in each system. When stable modes are not suppressed by added physical

effects, the transfer of energy from unstable to stable modes plays an important role in

saturation, and stable modes are expected or directly shown to be excited to significant

amplitudes in the ensuing turbulence. The excitation of stable modes is linked to the

transport of momentum against its gradient, an effect previously observed in experiments.

It is shown that accounting for stable modes can significantly improve reduced models of

momentum transport in regimes where they reach significant amplitude.

The major contributions of this work are twofold. First, nonlinear coupling to large-

scale stable modes is shown to be a generic feature of KH-unstable shear flows. Stable modes

are shown to provide a valuable interpretive framework for explaining how features of the

turbulence change with system parameters (e.g. understanding why adding a magnetic

field in the direction of the shear flow enhances small-scale fluctuations), and they inform

improvements to reduced models. Second, in carrying out this work, tools developed

for studying stable modes in quasi-homogeneous systems have been extended to apply to

inhomogeneous systems, with stable modes shown to be relevant in inhomogeneous systems

for the first time. Thus, this work motivates investigations into stable modes more broadly

in inhomogeneous systems and provides the necessary tools for these investigations.

Further details of each study are given in the abstracts of Chapters 2, 3, and 4.



iii

Dedication

To my brothers, Andrew and Jamie.



iv

Acknowledgments

First and foremost I am grateful to my advisors Paul Terry and Ellen

Zweibel for their brilliant mentorship, the outstanding work environments

they provided in which I was able to learn and grow as a scientist, and

the examples they set as exceptional and ethical researchers, instructors,

and academic community members. I am also grateful to my mentor and

collaborator M.J. Pueschel for teaching me so many of the practical details

of academia and for getting me started on high performance computing,

working with pseudospectral codes, and gyrokinetics. Thanks also to the

exceptional graduate-level plasma physics, fluid dynamics, and quantum

mechanics instructors I had, who are too many to list, but whose dedication

to outstanding teaching provided me with the strong background I needed

to conduct this research.

The outstanding work environments I was lucky to be a part of would

not have been half as enjoyable without the peers and friends I got to know in

Paul and Ellen’s groups. I’m especially thankful to have worked with Chad,



v

whose brilliant ideas for what we would do if we left the program eased some

of the anxieties first years face in our program, Jacqueline, who is responsible

for most of what I know about stellar oscillations, science communication,

and organizing work, and the Cascave, including Ben, Garth, Ian, Jason,

Justin, and Zach, for the camaraderie and helpful discussions over the years.

Thank you to everyone I met through the TAA, everyone who got

involved in PGSC over the years, and the people who started the important

conversations in our department: GMaWiP and especially Emily Lichko.

These communities helped show what grad student advocacy can do, and

that some of the uglier sides of academia can be addressed with hard work.

Thanks also to Lisa Everett for her incredible efforts to listen to and guide

students and address various concerns.

Thank you to the Dedalus developers for creating such an outstandingly

flexible and user-friendly code that made much of the work presented in this

thesis possible, and for their tireless efforts supporting the user group by

answering questions on the group page. Special thanks to Daniel Lecoanet

and Keaton Burns for several lengthy and helpful discussions on both the

physics and code aspects of my work involving Dedalus.

To Jack Schroeder, thank you for all your hard work that you put

into our collaboration, especially when paying you was no longer possible.



vi

Without your contribution, the calculation would still just be a speculative

idea.

Finally, I can’t possibly thank Kendra Turk-Kubo and Mike Kubo

enough for the endless kindness they showed me when I first arrived in

Santa Cruz. They helped in more ways than are reasonable to list here, but

above all they made sure I was situated and felt welcomed. Without them,

the final stretch towards defending would have been extremely stressful and

difficult.



vii

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Stable modes . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . 13

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Shear flow instability saturation, hydrodynamics 22

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Linear Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Eigenmode Projection . . . . . . . . . . . . . . . . . . . . . 35



viii

2.4 The Threshold Parameter . . . . . . . . . . . . . . . . . . . 44

2.5 Momentum Transport . . . . . . . . . . . . . . . . . . . . . 52

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Coupling Coefficients . . . . . . . . . . . . . . . . . . . . . . 57

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Driven shear flows, gyrokinetics 61

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Shear Flow Instability . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Rayleigh’s Stability Equation . . . . . . . . . . . . . 69

3.2.2 Kolmogorov Flow . . . . . . . . . . . . . . . . . . . . 71

3.2.3 Numerical implementation and benchmarking . . . . 72

3.2.4 Forcing and dissipation terms . . . . . . . . . . . . . 78

3.3 Eigenspectrum . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Subdominant modes . . . . . . . . . . . . . . . . . . 81

3.3.2 Forcing and dissipation effects . . . . . . . . . . . . . 84

3.4 Instability saturation . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Saturation and decaying turbulence . . . . . . . . . . 85

3.4.2 Driven turbulence . . . . . . . . . . . . . . . . . . . . 87

3.4.3 Momentum transport . . . . . . . . . . . . . . . . . . 90



ix

3.5 Eigenmode analysis . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.1 Eigenmode Expansion . . . . . . . . . . . . . . . . . 93

3.5.2 Truncated eigenmode expansions . . . . . . . . . . . 99

3.5.3 Influence of forcing and dissipation . . . . . . . . . . 102

3.5.4 Influence of stable modes in analytical models . . . . 105

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 Free shear layer, MHD 118

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.1 Equilibrium, governing equations . . . . . . . . . . . 127

4.2.2 Perturbation equations . . . . . . . . . . . . . . . . . 129

4.2.3 Numerical implementation . . . . . . . . . . . . . . . 131

4.3 Eigenmodes, eigenvalues for the U = tanh(z), Bx = 1

equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4 Hydrodynamic evolution . . . . . . . . . . . . . . . . . . . . 140

4.5 MHD system, weak-field regime . . . . . . . . . . . . . . . . 144

4.5.1 Flow, field features . . . . . . . . . . . . . . . . . . . 147

4.5.2 Energy content . . . . . . . . . . . . . . . . . . . . . 149



x

4.5.3 Momentum transport . . . . . . . . . . . . . . . . . . 156

4.5.4 Directly calculating stable mode excitation . . . . . . 162

4.5.5 Approximating fluctuations with truncated eigenmode

decompositions . . . . . . . . . . . . . . . . . . . . . 170

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Constructing a basis with the linear modes . . . . . . . . . . 177

B Details of inner product used in this work . . . . . . . . . . 182

C Nonlinear coupling of linear modes . . . . . . . . . . . . . . 183

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5 Summary and Conclusions 194

5.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . 195

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



xi

List of Tables



xii

List of Figures

2.1 Dispersion relation for the hydrodynamic system . . . . . . . 33

2.2 Eigenmode structures for the hydrodynamic system . . . . . 35

2.3 Coupling coefficients for the hydrodynamic system . . . . . . 44

2.4 Contributions to saturation in the hydrodynamic system . . 47

2.5 Eigenmode amplitudes, truncated hydrodynamic system . . 50

2.6 Superpositions of different eigenmodes, hydrodynamic system 52

3.1 Dispersion relation for the gyrokinetic system . . . . . . . . 75

3.2 Eigenvalue spectra for the gyrokinetic system . . . . . . . . 80

3.3 Eigenmode structures for the hydrodynamic system . . . . . 83

3.4 Energy timetraces, gyrokinetic simulations . . . . . . . . . . 85

3.5 Flow snapshots, unforced gyrokinetic simulations . . . . . . 87

3.6 Flow snapshots, driven gyrokinetic simulations . . . . . . . . 89

3.7 Forcing and Reynolds stress force balance, gyrokinetic simu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



xiii

3.8 Eigenmode amplitudes, gyrokinetic simulations . . . . . . . 94

3.9 Flow approximations with truncated eigenmode expansions,

gyrokinetic simulations . . . . . . . . . . . . . . . . . . . . . 100

3.10 Quantifying error for truncated eigenmode expansions, gy-

rokinetic simulations . . . . . . . . . . . . . . . . . . . . . . 101

3.11 Influence of damping on stable, unstable mode excitation,

gyrokinetic simulations . . . . . . . . . . . . . . . . . . . . . 103

3.12 Influence of forcing on stable, unstable mode excitations,

gyrokinetic simulations . . . . . . . . . . . . . . . . . . . . . 104

3.13 Comparing reduced models with and without stable modes

included, gyrokinetics . . . . . . . . . . . . . . . . . . . . . . 107

4.1 Dispersion relation, MHD shear layer . . . . . . . . . . . . . 135

4.2 MHD Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Eigenmode Reynolds and Maxwell stresses . . . . . . . . . . 139

4.4 Kinetic energy timetraces, hydrodynamics . . . . . . . . . . 142

4.5 Flow snapshots, hydrodynamics . . . . . . . . . . . . . . . . 145

4.6 Reynolds stress, mode amplitude correspondence . . . . . . . 147

4.7 Flow and field snapshots, MHD . . . . . . . . . . . . . . . . 148

4.8 Energy timetraces, MHD . . . . . . . . . . . . . . . . . . . . 150

4.9 Dissipation timetraces, MHD . . . . . . . . . . . . . . . . . 154



xiv

4.10 Mean flow kinetic energy timetrace . . . . . . . . . . . . . . 155

4.11 Momentum transport breakdown . . . . . . . . . . . . . . . 157

4.12 Momentum transport, MA scan . . . . . . . . . . . . . . . . 160

4.13 Growth rate over time with quasilinear flattening . . . . . . 166

4.14 Mode amplitudes, MHD . . . . . . . . . . . . . . . . . . . . 168

4.15 Mode amplitudes, MA scan . . . . . . . . . . . . . . . . . . . 170

4.16 Truncated mode decomposition, MA = 40, kx = 0.2 . . . . . 172

4.17 Truncated mode decomposition, MA = 40, kx = 0.4 . . . . . 174

4.18 Truncated mode decomposition, MA = 7.5, kx = 0.2 . . . . . 174

4.19 Coupling coefficients, MHD . . . . . . . . . . . . . . . . . . 188

4.20 Threshold parameter, MHD . . . . . . . . . . . . . . . . . . 191



1

Chapter 1

Introduction

1.1 Shear flow

When one fluid, whether a liquid, gas, or plasma, flows along another

one at a different velocity, or when two layers of a single fluid flow along

each other at different velocities, that flow configuration is broadly referred

to as a shear flow. Shear flows are ubiquitous in everyday life: when wind

flows over the surface of a lake, when one blows air over hot soup to cool it,

or when fluids move through pipes, as the outer rings of the flow generally

move slower than the inner regions due to friction. When the flow shear is

mostly confined to a narrow region between two fluids that are otherwise in

generally uniform motion, as in the case of wind over the surface of a lake,

that region is called a shear layer.

Shear flows are similarly ubiquitous in space and astrophysical systems.
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In accretion disks, or disk-shaped structures that rotate around a new star or

black hole that slowly leaches matter from the disk, neighboring rings of the

disk rotate at different rates, producing a rotational flow shear (Balbus &

Hawley 1998). When the solar wind flows past the Earth’s magnetosphere,

a shear layer is observed between them (Faganello & Califano 2017). When

relativistic jets are launched from active galactic nuclei, a shear layer is

expected at the interface between the jet and the surrounding medium, and

the flow within the jet is expected to be sheared as well (Rieger 2019). Shear

flows are important in laboratory plasmas too, with one prominent example

being the flow shear that exists in the pedestal region of tokamaks operating

in H-mode regimes (Wagner 2007).

Shear flows are of significant interest to scientists in many fields not

only because they are so common, but because they can play a crucial role

in the systems where they are found. This often stems from their potential

to be unstable, with small perturbations growing by feeding off the kinetic

energy of the flow and disrupting the system. While air blowing over the

surface of a lake is an equilibrium configuration (neglecting viscosity), it

can be unstable. If the wind is fast enough, the slightest perturbation will

disrupt the steady, horizontal layer between the two fluids and cause waves to

form. This instability of a shear layer between two fluids in uniform motion



3

relative to one another is referred to as the Kelvin-Helmholtz instability (or

KH instability), named after two scientists who studied it in the 19th and

early 20th centuries (see Chandrasekhar 1961, and references therein for a

brief historical review). This name is often used to refer generically to other

sufficiently-similar instabilities as well, as will be done in this thesis.

These instabilities modify the flows where they are found by disrupting

shear layers with the formation of large waves or even coherent vortices. For

this reason, shear-flow instabilities have been studied in detail for several

decades. Topics of interest include different flow configurations that can be

unstable, the growth rate and shape of the waves that initially emerge, and

how these are affected by properties of the fluid such as its density or flow

speed. For the category of shear flow instabilities discussed in this thesis,

these properties can all be obtained by performing linear stability analyses

(Chandrasekhar 1961; Drazin & Reid 1981; Drazin 2002).

The instability of these flows is only half of why they are important

to study, and these linear stability properties are very much the easier half.

The other half lies in how the growth of these perturbations ceases, or how

the instability saturates, and what follows. After the disturbances become

sufficiently large, they often lead to a state of turbulence – roughly defined

as chaotic fluctuations interacting with each other across a range of spatial
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scales, from the large scale of the flow shear to a small scale determined

by viscosity or similar effects. These fluctuations can advectively transport

heat, particles, and momentum across the flow at a much higher rate than

diffusion and viscosity alone would in the absence of instability. Thus, the

instability and ensuing turbulent transport due to the shear layer between

the Earth’s magnetosphere and the solar wind, for example, might play a

crucial role in determining the transport of solar wind particles into the

magnetosphere (Faganello & Califano 2017).

Predictions for these transport properties are not given by linear stabil-

ity analyses alone and are often challenging to obtain reliably. Turbulence

is famously complex, making predictions of the enhanced transport that it

brings elusive. Standard efforts generally employ potentially-severe simplify-

ing assumptions for the nature of the turbulent state, expensive numerical

simulations, or both. A common class of simplifying assumptions in this

context, sometimes called a quasilinear model or approximation, involves

approximating the turbulent state with the growing perturbations obtained

from linear stability analyses (e.g. Garaud 2001). Often the overall ampli-

tude, and hence the turbulent transport, is assumed to scale like the growth

rate of the instability (e.g. Whelan et al. 2018), so that variation in trans-

port as system parameters change can be predicted by performing simple
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linear stability analyses at different parameters. This can be compared to

turbulent viscosity models used in stellar evolution codes (e.g. Heger et al.

2000; Paxton et al. 2013). Many examples that contradict these scaling

arguments exist, however. Of particular relevance to one of the studies in

this thesis, previous work has shown that the momentum transport in KH-

driven turbulence increases when a uniform magnetic field in the direction

of the flow is added (Palotti et al. 2008; Mak et al. 2017). This contradicts

expectations from quasilinear models because the growth rate of the insta-

bility decreases with an added magnetic field, as the tension in the field

lines tends to suppress the growth of waves as they distort the shear layer

(Chandrasekhar 1961). Thus, with less free energy transferring from the

shear flow to the perturbations, one might expect weaker turbulence and

less transport, when in fact the opposite occurs.

Generally, a combination of analytical approaches and direct numer-

ical simulations are used to model turbulent transport. The previously-

mentioned accretion disk system serves as an example where this turbulent

transport is important and where models are still sought. The rate at which

matter falls onto the central object is directly tied to the rate at which an-

gular momentum is transported outward by the shear flow. However, the

inferred infall rate based on observations in various systems is far greater
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than what is predicted based on viscous angular momentum transport alone.

Turbulence driven by shear flow instability is believed to provide the neces-

sary enhanced transport (Balbus & Hawley 1998). But like many turbulent

astrophysical systems, the range of scales over which this turbulence exists

is so large, due to the system’s large size and the vanishingly small viscosity,

that it cannot be accurately simulated on modern supercomputers. Instead,

models are often developed in simplified systems that supercomputers are

able to simulate (e.g. with increased viscosity), and then extrapolated to the

more realistic systems. The first of two central motivations for this work is

the need for models that can be tested in numerically tractable regimes, then

extrapolated to hysically relevant but numerically intractable regimes.

In a very different context than shear flows – plasma microturbulence

driven by instabilities in the cores of fusion devices – accurate, reduced

transport models have been constructed by studying in greater detail how

the instabilities initially saturate (for recent examples see Whelan et al. 2018;

Terry et al. 2018; Hegna et al. 2018). These saturation studies leverage

previously-ignored properties of the instabilities, namely the existence of

stable modes, which are decribed in the following section. When the work

presented in this thesis began, stable modes had not been investigated as a

saturation mechanism outside of a set of instabilities mostly relevant to the
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cores of fusion devices. The second central motivation for this work is to

explore whether stable modes are relevant to a broader range of instabilities

than they had previously been studied in, starting with unstable shear flows.

1.2 Stable modes

When a parent applies periodic forcing to a child on a playground

swing, the amplitude of the swinging motion increases if the forcing has

the right phase relative to the swinging motion, with energy transferring

from the parent to the swinging child. If the relative phase between the

forcing and swinging is changed, the transfer of energy reverses, and the

applied forcing slows the child down. Similarly, the transfer of energy can

reverse between unstable equilibria and their perturbations. In the case of

an unstable shear layer, small perturbations grow in amplitude by feeding

off of the kinetic energy of the flow, with linear stability analyses yielding

the shapes of the growing perturbations driven by the flow, called unstable

modes. Linear stability analyses also reveal the existence of stable modes,

or perturbations of a particular shape such that they transfer energy back

to the shear flow, decreasing their amplitude (Chandrasekhar 1961; Drazin

& Reid 1981).1 A generic, random perturbation can be a combination

1Perturbations that tend to decay due to viscosity or resistivity are also called stable modes, but they
are generally smaller in scale than the unstable and stable modes studied here. Also, to avoid confusion,
modes whose amplitudes remain unchanged by the shear flow will be referred to as marginally stable modes
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of many different modes, including stable and unstable, so that energy is

simultaneously being transferred from the shear flow to the perturbation and

from the perturbation to the shear flow2. In incompressible hydrodynamic

systems, the Reynolds-Orr energy equation (see Eq. 5.28 in Drazin 2002)

relates the energy transfer between a perturbation and shear flow to the

associated momentum transport across the flow by the perturbation. As

a result, transfer from the shear flow to the perturbation via unstable

modes directly corresponds to down-gradient momentum transport, and

transfer from the perturbation to the shear flow via stable modes directly

corresponds to counter-gradient momentum transport (this can be compared

to the contributions of stable and unstable modes to transport in other

systems, see, e.g., Terry et al. 2006, 2009). This counter-gradient momentum

transport has been observed in laboratory experiments of shear layers (e.g.

Ho & Huerre 1984; Hurst et al. 2020), providing evidence that stable

modes are excited in unstable shear flows (see also Qian & Mauel 2020, for

measurements of stable mode excitation in a different system). However,

the observed counter-gradient transport in unstable shear flows had not

throughout this thesis.

2In simple systems, e.g. hydrodynamic and unstratified, energy transfer to and from the shear flow is
the entirety of what these large-scale stable and unstable modes do. But if, say, magnetic fields or density
stratification are considered, then energy transfer to and from the background might also take the shape
of field amplification or modification of the background density gradient.
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previously been connected to stable mode activity.

If stable modes had no other source of energy, they would gradually

decay and eventually vanish as they transfer all their energy to the shear

flow. This raises the question of how they can be observed in experiments

despite this tendency to decay. As stated in the previous section, a

characteristic feature of turbulence is the constant, chaotic interaction

between fluctuations of different sizes – small and large eddies emerging and

decaying and exchanging energy. Previous work in the context of fusion

devices showed that these same interactions transfer energy from unstable

modes, which are constantly gaining energy from the unstable equilibrium,

to stable modes, which are constantly losing energy by their interaction

with the equilibrium (Terry et al. 2006). Thus, stable modes can resist their

tendency to decay in amplitude provided they gain a sufficient amount of

energy from unstable modes.

If the rate of energy transfer from unstable modes to stable modes

reaches the rate that energy flows into unstable modes from the equilibrium,

the unstable modes must stop growing. This presents a means by which

an instability can saturate. Two other important saturation mechanisms

are a scenario in which the source of free energy driving the instability is
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sufficiently exhausted that the transfer to unstable modes halts3, here called

quasilinear flattening, or one in which the energy transferred into unstable

modes is balanced by a transfer of energy to smaller scales where that energy

is dissipated by processes like viscosity.

Previous work developed methods for calculating analytically how

this unstable-to-stable energy transfer compares to the transfer to small

scales, so that systems where large-scale stable modes are important can

be distinguished from those where they are less important (Terry et al.

2006; Makwana et al. 2011). Additional methods were developed for

analyzing numerical simulations of instability-driven turbulence, including

decomposing the fluctuations into stable and unstable mode contributions

(Hatch et al. 2011; Terry et al. 2014), demonstrating that in regimes

where stable modes affect instability saturation, they are also found to be

excited to large amplitudes in the ensuing turbulence. This has important

consequences to reduced models of turbulent transport. Many models

assume for simplicity that the large-scale fluctuations in the turbulence are

dominated by the most-unstable modes. Where the excitation of other

modes, including stable ones, has been demonstrated, it has also been

shown that these models can be improved by relaxing this assumption and

3For example, in instabilities driven by a temperature gradient, if the gradient relaxes so that previously-
unstable modes are no longer unstable (Böhm-Vitense 1958)
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including the effects of additional modes (Pueschel et al. 2016; Whelan et al.

2018). This thesis demonstrates that the same is often true for KH-driven

turbulence.

These previous studies investigated plasma turbulence driven by many

different instabilities, finding stable modes to be important in a broad range

of systems (e.g. Makwana et al. 2011). However, they were generally systems

relevant to fusion devices, and the characteristic length scales of the unstable

modes and the turbulent fluctuations were much smaller than the scales of

the gradients driving the instabilities. As is explained in greater detail in

Chapter 2, this allows for a quasi-homogenous – or local, as opposed to global

– description that simplifies these stable mode calculations. However, this

leaves unanswered whether the seemingly-universal nature of these stable

mode effects are limited to quasi-homogeneous systems, or whether stable

modes are relevant more generally in systems of instability-driven turbulence

that are not quasi-homogeneous, including many astrophysical scenarios.

In this thesis, both analytical (Terry et al. 2006; Makwana et al. 2011)

and numerical (Hatch et al. 2011; Terry et al. 2014) methods employed pre-

viously to study stable mode activity are applied to KH-unstable shear flows.

Three different flow profiles and three different physical models (hydrody-

namic, gyrokinetic, and magnetohydrodynamic, or MHD) are considered.
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The connection between counter-gradient momentum transport and stable

modes is made explicit. It is shown that stable modes are generally driven

by unstable modes to a significant amplitude where they affect instability

saturation and turbulent momentum transport – with some exceptions de-

pending on system parameters – and that accounting for them can improve

reduced models of momentum transport. As will be shown in Chapter 2, the

KH instability is inherently non-local. To investigate stable mode physics in

KH-driven turbulence therefore requires adapting existing methods to apply

to more generic systems. By finding that stable modes are important, this

work establishes that their importance extends beyond quasi-homogeneous,

fusion-relevant systems and includes a broader range of instabilities.

An additional feature of previous systems where stable modes were

investigated is that the driving gradients were held fixed. This precludes

quasilinear flattening as a saturation mechanism.4 Thus, only saturation

by transfer to large-scale stable modes or to small, dissipative scales was

permitted. In Chapter 4 of this thesis, a system where quasilinear flattening

is allowed to occur is studied. While relaxation of driving gradients

significantly complicates the analyses, stable modes are still shown to be

4This also causes the energy transfer from the perturbation to the equilibrium by stable modes to be
non-conservative: the energy lost via stable modes is not accounted for in a corresponding increase in
energy of the equilibrium, because it is held fixed. Likewise for unstable modes. This is explained in
greater detail in Chapter 4.
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driven by coupling to unstable modes and to affect turbulent momentum

transport as long as other effects unique to that system do not dominate.

1.3 Thesis summary

The previous sections explained why shear flows are of broad impor-

tance and what particular aspect of shear flows are investigated in this thesis,

as well as how this work fits into and extends an existing body of work on

stable modes. This thesis is composed of three different investigations, each

described in a separate chapter, summarized here.

The first investigation, published in Fraser et al. (2017), forms Chapter

2 of this thesis. There, the role of stable modes in instability saturation for

an unstable shear layer was studied analytically for a simplified, idealized,

hydrodynamic system: a two-dimensional, incompressible, inviscid fluid of

uniform density, with a base flow profile, corresponding to a shear layer

of finite width, that was artificially held fixed. The flow was in the

horizontal direction and varied in the vertical direction in a piecewise-

linear way, with the flow velocity uniform above and below the layer,

and the shear (derivative with respect to the vertical coordinate of the

horizontal flow) constant within the layer. Because the linear modes in

this system have nontrivial structures that extend on either side of the

layer, the local descriptions used in quasi-homogeneous systems are not
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appropriate. However, by focusing on the dynamics at the edges of the

layer, equations that are mathematically similar to those in previously-

studied quasi-homogeneous systems were recovered. This allowed the role

of stable modes relative to other modes in instability saturation to be

calculated using existing methods. The threshold parameter Pt (Terry et al.

2006; Makwana et al. 2011), which evaluates the relative contributions to

saturation of the instability by energy transfer to stable modes versus other

modes, was calculated in a shear flow system for the first time. Stable

modes were shown to be nonlinearly coupled to unstable modes in a shear

flow, with sufficient energy transfer from unstable to stable modes relative

to other energy transfer channels that stable modes play an important role

in saturation. It was also shown how they can be expected to reduce or

even reverse the transfer of momentum relative to the transport induced by

unstable modes alone, making explicit their connection to counter-gradient

momentum transport.

In this first study, the coupling between unstable and stable modes was

assessed at instability saturation, but the calculation did not extend to the

ensuing turbulence, and did not yield the specific amplitudes of individual

modes. These mode amplitudes are necessary for assessing in detail the

impact on momentum transport, so while the potential for a significant
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impact was demonstrated, quantitative details remained to be shown. This

motivated the next investigation.

To study KH-driven turbulence in greater detail, the second study,

which is published in Fraser et al. (2018) and forms Chapter 3 of this

thesis, concerns direct numerical simulations of an unstable shear flow. The

numerical methods for investigating stable mode excitation used in Hatch

et al. (2011) and Terry et al. (2014) are applied here. The flow profile

considered was a horizontal flow that varied sinusoidally in the vertical

direction.5 The flow was maintained against quasilinear flattening by a

sinusoidal body forcing resembling Hook’s law: at each time, the applied

force was proportional to the difference between the initial equilibrium flow

and the horizontally-averaged flow, with the constant of proportionality a

free parameter. While the ensuing dynamics were essentially hydrodynamic,

the simulations were carried out in the gyrokinetic framework. The KH

instability is of interest as a possible tertiary instability in the cores of fusion

devices (Rogers & Dorland 2005), where the gyrokinetic framework is often

applied. Although the KH instability is stabilized by a sufficiently strong,

flow-aligned magnetic field, and a strong magnetic field is a fundamental

assumption built into the gyrokinetic framework, the instability can still

5Reader beware: in Chapters 2 and 4, the “horizontal” direction of flow is x and the “vertical” direction
of shear is z, while in Chapter 3 the flow is in y and varies in x.
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exist if the equilibrium flow and its gradient are perpendicular to this strong

magnetic field, as is the case here.

While the KH instability is relevant to systems where the gyrokinetic

framework is often applied (Rogers & Dorland 2005) and the instability can

be studied in this framework, a more practical motivation for the use of

the gyrokinetic framework here was the particular simulation code that was

used: the Gene code (Jenko et al. 2000). The same code was used previously

to study stable modes in instability-driven turbulence (e.g. Hatch et al.

2011; Terry et al. 2014), so many of the necessary numerical tools for this

study had already been developed. Specifically, calculating the excitation

of different modes in a turbulent state not only requires nonlinear initial

value calculations but also eigenvalue capabilities that yield left eigenvectors

(Hatch et al. 2011; Terry et al. 2014). Thus, this study could more easily

be performed in the gyrokinetic framework than it could with a fluid model

using a different code, where these extra capabilities would likely need to

be developed first.

This second study showed that, consistent with the hydrodynamic case,

stable modes are nonlinearly driven by unstable modes leading into satura-

tion of the KH instability in gyrokinetics and remain excited in the turbu-

lent state. Furthermore, in simulations where an added “radiative” damping
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term is small, the study showed stable modes are excited to amplitudes that

are almost as high as unstable mode amplitudes in the ensuing turbulence,

indicating that the transfer of energy from the turbulence to the background

flow is almost as large as the transfer from the background to the turbu-

lence. Turbulent fluctuations at the relevant spatial scales were shown to

be well-approximated by a linear combination of just stable and unstable

modes, neglecting tens of thousands of marginally stable modes at those

same scales, some of which had even higher amplitudes than the unstable

modes. In effect, while the turbulent state at each of these wavenumbers

can be viewed as an element of a vector space of very high dimension, it

mostly remains in a two-dimensional subspace as far as the flow fluctua-

tions are concerned. This motivated the development of a reduced model

in terms of stable and unstable mode amplitudes to describe how turbulent

momentum transport scales with the included forcing term in this system.

In parameter regimes where stable modes were excited, their inclusion in the

transport model was necessary for accurate scaling predictions. In regimes

where stable modes were suppressed, their inclusion made little difference

to the model’s accuracy.6

As described in Section 1.1, when a magnetic field is aligned with an

6The model was not closed – mode amplitudes were inserted from the simulations. However, this still
demonstrates the importance of stable modes in such models.
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unstable shear flow, the ensuing turbulent transport is enhanced (Palotti

et al. 2008; Mak et al. 2017) despite the KH instability’s growth rate

being reduced (Chandrasekhar 1961). This is explored in Chapter 4, where

simulations are performed of the KH instability of a shear layer with a

flow-aligned magnetic field in MHD using the Dedalus code (Burns et al.

2020). The initial flow profile is similar to the one studied in Chapter

2 but is smooth, varying in the z direction as tanh(z). The flow is also

allowed to evolve freely, with the unstable shear not held fixed and not

maintained by any external forcing terms. As unstable modes are excited,

they transfer energy from the background flow, transport momentum down

the gradient, and broaden the shear layer, thus reducing the shear layer’s

propensity to further drive instability. In this way, the saturation of the

instability is governed not only by transfer to large-scale stable modes,

which is directly observed in simulations using the same methods as in

Chapter 3, and the standard transfer to small, dissipative scales, but also

by quasilinear flattening. When stable modes are excited, they are directly

shown to produce counter-gradient momentum transport that transiently

reduces the shear layer’s width whenever they dominate over unstable

modes. As the strength of the magnetic field increases, stable modes

become less important, and the energy that would transfer back to the
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equilibrium is instead transferred to small-scale magnetic fluctuations that

enhance turbulent momentum transport and provide resistive dissipation

that generally exceeds viscous dissipation. Applying the transport modeling

efforts of Chapter 3 to this system yields some success, with the momentum

transport due to flow fluctuations described well by stable and unstable

modes alone. However, the contribution to momentum transport by the

field fluctuations, which dominates in some regimes, is not well-described

by these models.
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Abstract

Analysis of the saturation of the Kelvin-Helmholtz (KH) instability is under-

taken to determine the extent to which the conjugate linearly stable mode

plays a role. For a piecewise-continuous mean flow profile with constant

shear in a fixed layer, it is shown that the stable mode is nonlinearly ex-

cited, providing an injection-scale sink of the fluctuation energy similar to

what has been found for gyroradius-scale drift-wave turbulence. Quantita-

tive evaluation of the contribution of the stable mode to the energy balance

at the onset of saturation shows that nonlinear energy transfer to the stable

mode is as significant as energy transfer to small scales in balancing energy

injected into the spectrum by the instability. The effect of the stable mode

on momentum transport is quantified by expressing the Reynolds stress in

terms of stable and unstable mode amplitudes at saturation, from which

it is found that the stable mode can produce a sizable reduction in the

momentum flux.
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2.1 Introduction

Shear flows are encountered in a variety of different systems. In the at-

mosphere, shear-flow instabilities are observed in cloud patterns (Browning

1971). In fusion devices, turbulence generates shearing zonal flows whose

potential for instability can significantly impact confinement (Dimits et al.

1996; Rogers et al. 2000). Shear-flow instabilities are especially important

in astrophysics. There, differential velocities are produced by a host of pro-

cesses in a variety of settings, including jets driven by accretion of mass onto

compact objects such as protostars or supermassive black holes, intergalac-

tic clouds falling into a galaxy, and galaxies plowing through the intracluster

medium. In astrophysical systems, it is thought that shear-flow instabilities

induce formation of a turbulent shear layer, resulting in entrainment of ma-

terial through turbulent momentum transport (Churchwell 1997), thermal

and chemical mixing (Kwak et al. 2015), and the possibility of acceleration

of particles to high energy (Rieger & Duffy 2006).

Shear-flow instability in a plasma with a uniform magnetic field per-

pendicular to both the flow and shear directions has the same growth rate as

hydrodynamic shear flow with the same profile, illustrating that strong con-

nections exist between hydrodynamic and plasma shear-flow instabilities.
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The number of potential applications in both systems makes quantitative

models of turbulence driven by sheared flows highly desirable. Analytical

models that describe spectral properties are important because both the sep-

aration between scales and Reynolds numbers found in astrophysical systems

are much larger than what can typically be obtained in converged hydrody-

namic and magnetohydrodynamic (MHD) simulations (Palotti et al. 2008;

Lecoanet et al. 2016).

Efforts to characterize the nonlinear state of turbulent systems like

those mentioned above commonly employ the growth rate and mode struc-

ture of the dominant linearly unstable eigenmode, which, after all, drives

the turbulence. Examples are mixing-length estimates of transport, which

for unstable systems are built on the linear growth rate and an unstable

wavenumber, and the quasilinear transport approximation, which uses the

cross phase of the unstable eigenmode to approximate the fluctuating cor-

relation responsible for transport. Such approximations are straightforward

to construct because they rely on well-understood linear properties of in-

stabilities. However, as unstable systems move into the turbulent regime,

there can be no saturation if fluctuations and transport are not modified

from the linear state in some essential fashion. The precise nature of such

modifications is not well understood. The standard assumption is that the
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modifications can be treated as a cascade to smaller scales that eventually

become damped, in analogy to externally forced Navier-Stokes turbulence.

This type of approach overlooks stable eigenmodes at the same scales as the

instability, which invariably exist as other roots of the instability dispersion

relation, and may modify the dynamics at the largest scales.

In gyroradius-scale instability-driven turbulence relevant to fusion de-

vices, it has been recognized for more than a decade that stable modes are

important in turbulence and should not be neglected (Baver et al. 2002;

Hatch et al. 2012). Such modes can be represented as eigenmodes of the lin-

earized system, and occur at the same length scale as the driving instability.

Both stable modes, which have a negative linear growth rate (Terry et al.

2006), and subdominant modes, which can have a growth rate that is posi-

tive but smaller than that of the most unstable mode (Pueschel et al. 2016),

are difficult to detect in initial value simulations. When perturbations are

small and only the linear dynamics are considered, these modes are negli-

gible compared to the most unstable mode. However, as the most unstable

mode grows in amplitude, nonlinear three-wave interactions between it and

the stable modes can pump energy into the latter, causing them to grow and

have a significant impact on the turbulence. In collisionless trapped electron

mode turbulence, for example, stable modes radically change the dynamics



27

of the system, including changing the direction of particle flux (Terry et al.

2006; Terry & Gatto 2006). In recent studies of plasma microturbulence in

stellarators, quasilinear calculations of energy transport cannot reproduce

the results of nonlinear simulations without including every subdominant

unstable mode (Pueschel et al. 2016).

While it has been demonstrated that stable modes are universally

excited and can have significant impacts on turbulence in the context of

gyroradius-scale instabilities in fusion plasmas, their effects have not been

studied in global-scale hydrodynamic or MHD instabilities. This paper

presents an analysis of a hydrodynamic system with global-scale eigenmodes,

demonstrating the nonlinear excitation of stable modes and quantifying their

impact on the turbulence using techniques that were successful in plasma

microturbulence. An important aspect of this paper is that tools developed

in previous analytic calculations for homogeneous systems are extended for

analysis of nonlinear excitation in the inhomogeneous environment of unsta-

ble shear flows. In previous calculations, the PDEs that describe relevant

dynamical quantities were Fourier-transformed to obtain a system of ODEs

describing the time-dependence of the Fourier amplitudes. The ODEs were

then linearized about an unstable equilibrium to obtain a system of equa-

tions of the form ḟ = Df , where f(k, t) is a vector describing the state of the
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system at wavenumber k, and D is the matrix of linear coupling coefficients.

The eigenvectors of D are the eigenmodes of the system, and their eigenval-

ues are the frequencies and growth rates. The nonlinear excitation of linearly

stable modes was then demonstrated by expanding the nonlinearities of the

ODEs in the basis of the linear eigenmodes. With inhomogeneous systems,

eigenmodes are not obtained by Fourier-transforming the PDEs and diago-

nalizing a matrix. Consequently, constructing an invertible transformation

between dynamical quantities and linear eigenmodes, and expanding non-

linearities in terms of the eigenmodes, requires appropriate conditioning of

the problem.

The paper is organized as follows. In Sec. 2.2 we consider an unstable

shear flow and discuss its unstable and stable eigenmodes. In Sec. 2.3 we

develop a mapping of the fluctuating flow onto the linear eigenmodes that

allows a quantitative description of the energy transfer between the unstable

and stable modes. In Sec. 2.4 we use the tools of previous calculations

to assess the level to which stable modes are excited relative to unstable

modes in saturation. In Sec. 2.5 we consider the impact of stable modes on

turbulent momentum transport. Conclusions are presented in Sec. 2.6.

Though we start from equations that describe a two-dimensional,

unmagnetized shear flow, this system is identical to a magnetized shear
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flow where the equilibrium magnetic field is uniform and in the direction

perpendicular to both the flow and the gradient of the flow (Chandrasekhar

1961). Future work will consider the case of a magnetic field in the direction

of flow.

2.2 Linear Modes

We investigate a piecewise linear equilibrium flow in the x direction

with variation in the z direction within a finite region of width 2d, referred

to as the shear layer. The equilibrium flow is v0 = (U(z), 0, 0), where

U(z) =





1 z ≥ 1

z −1 ≤ z ≤ 1

−1 z ≤ −1.

Here, U = U ∗/U0 is the flow normalized to the flow speed U0 outside the

layer, (x, z) = (x∗/d, z∗/d) are coordinates normalized to the layer half-

width d, and time will be normalized by t = t∗U0/d.

Constant shear in a shear layer provides the simplest shear-flow insta-

bility for which the nonlinear driving of stable modes can be described an-

alytically. The vortex sheet (Chandrasekhar 1961) is an even simpler man-

ifestation of shear-flow instability, but the discontinuous equilibrium flow

leads to a discontinuous eigenmode structure. Consequently, the eigenmode
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projection of the nonlinearity, which is calculated in the following section

and involves a product of derivatives of the eigenmodes [see Eq. (2.10)], is

not well-defined.

Here, flow is assumed to be 2D (∂/∂y ≡ 0), inviscid, and incompress-

ible. It has been shown that for unmagnetized shear flows, 2D perturba-

tions are the most unstable (Drazin & Reid 1981), so it suffices to restrict

this analysis to the 2D system. The inviscid assumption simplifies the cal-

culation, although in physical systems at scales much smaller than those

considered here, viscosity acts to remove energy from perturbations. The

assumption of incompressibility is convenient because of the stabilizing effect

of compressibility on shear flow instabilities (Gerwin 1968). These assump-

tions allow the perturbed velocity to be written in terms of a stream function

v1 = ŷ ×∇Φ(x, z) = (∂Φ/∂z, 0,−∂Φ/∂x). The perturbed vorticity is then

entirely in the ŷ direction and is governed by the equation (Drazin & Reid

1981),

∂

∂t
∇2Φ + U

∂

∂x
∇2Φ− ∂Φ

∂x

d2U

dz2
+
∂Φ

∂z

∂

∂x
∇2Φ− ∂Φ

∂x

∂

∂z
∇2Φ = 0. (2.1)

This equation follows either from vorticity evolution in hydrodynamics or in

MHD when the mean field is perpendicular to the flow and the fluctuations

are electrostatic. We drop terms nonlinear in Φ and investigate normal

modes of the form Φ(x, z, t) = φ(k, z) exp[ikx+ iω(k)t], where k = k∗d and
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ω = ω∗d/U0. If we find that Im(ω(k)) < 0 for some mode at wavenumber k,

then the mode is unstable and grows exponentially in time. If Im(ω(k)) > 0,

the mode is stable and decays exponentially. If Im(ω(k)) = 0, the mode

is marginally stable. We take Fourier modes in x because Eq. (2.1) is

homogeneous in x, but the dependence of U on z implies that Fourier modes

in z are not solutions to the linear equation. This significantly complicates

the analysis of stable mode interactions, as discussed in the following section.

The linearized equation for the normal modes is (Drazin & Howard

1962)

(ω + kU)

(
d2

dz2
− k2

)
φ− kφd

2U

dz2
= 0. (2.2)

Solutions of this system are well known (Chandrasekhar 1961), but usually

only the growth rate of the unstable mode and its eigenfunction are

considered. We reexamine the problem to keep track of both the unstable

and stable modes, in order to investigate their interaction through the

nonlinearities in Eq. (2.1).

Note that for the shear layer, d2U/dz2 is singular at z = ±1. For |z| 6= 1

however, d2U/dz2 = 0, so

(ω + kU)

(
d2

dz2
− k2

)
φ = 0

(for |z| 6= 1). Solutions are given by either ω+kU = 0 or (d2/dz2−k2)φ = 0.

While modes that satisfy the former are solutions of the system, we are
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interested in stable and unstable modes, which require Im(ω) 6= 0. Therefore

we construct eigenmodes from (d2/dz2−k2)φ = 0. It has been shown that for

shear flow instabilities, the initial value calculation admits additional modes

that decay algebraically (Case 1960). While these modes potentially play

a role in saturation of the instability and should be considered eventually,

it makes sense to focus first on the interaction between the exponentially

growing and decaying modes. Both the exponentially and algebraically

decaying modes are ignored in quasilinear models of turbulence, so to show

that these models overlook important, driving-scale features of the system

it suffices to demonstrate the importance of stable modes.

Focusing on solutions of (d2/dz2 − k2)φ = 0, modes are given by

φ(z) =





ae−|k|z z > 1

e|k|z + be−|k|z −1 < z < 1

ce|k|z z < −1,

(2.3)

with the constants a, b, and c to be determined.

The flow profile U(z) is continuous at the boundaries of the shear

layer, which we assume to be fixed at z = ±1. Therefore φ must be

continuous (Chandrasekhar 1961), so a and c can each be written in terms

of b. Although U(z) and φ are continuous at z = ±1, the discontinuities in

dU/dz lead to discontinuities in dφ/dz. The jump conditions that determine
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these discontinuities are obtained by integrating Eq. (2.2) from −1 − ε to

−1 + ε and from 1− ε to 1 + ε, then taking ε→ 0:

lim
ε→0

(ω ± k)
dφ

dz

∣∣∣
±1+ε

±1−ε
± kφ(±1) = 0. (2.4)

After inserting Eq. (2.3), these form two constraints on b in terms of ω(k),

which can be solved to obtain the dispersion relation,

ω = ±e
−2|k|

2

√
e4|k|(1− 2|k|)2 − 1. (2.5)

Figure 2.1 shows how the growth rates and frequencies depend on wavenum-

ber. Note that ω2 < 0 for 0 < |k| < kc, where kc ≈ 0.64. For k > kc, we shall

refer to the negative and positive branches of ω as ω1 and ω2 respectively,

Figure 2.1 Growth rate Im(ω) and frequency Re(ω) of the two modes for the inviscid
shear layer. For |k| . 0.64 one mode is unstable and the other is stable, while for |k| & 0.64
both modes are marginally stable.
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noting that the reality condition requires ωj(−k) = ω∗j (k). For |k| < kc,

we choose ω1 to be the unstable root and ω2 the stable one. Because b

depends on ω through Eq. (2.4) and the eigenmode structure φ(z) depends

on b through Eq. (2.3), the two solutions ωj correspond to two different

eigenmodes φj(z). We identify bj and φj as the b and φ corresponding to

ωj. The eigenmodes are then

φj(k, z) =





(
e2|k| + bj

)
e−|k|z z > 1

e|k|z + bje
−|k|z −1 < z < 1

(
1 + bje

2|k|) e|k|z z < −1,

(2.6)

where

bj = e2|k|2|k|(ωj + k)− k
k

(2.7)

satisfies b1(k) = b2(−k) = b∗2(k) for |k| < kc, and bj(k) = bj(−k) = b∗j(k)

for |k| > kc. For ω2 < 0, the eigenmodes are nearly identical but satisfy

φ1(k, z) = φ∗2(k, z). Figure 2.2 shows the flows corresponding to these

eigenmodes for four wavenumbers sampling the unstable and stable ranges.

Previous work has shown that the physical mechanisms for instability of φ1

and stability of φ2 can be understood in terms of resonant vorticity waves

in both the hydrodynamic (Baines & Mitsuderaf 1994) and MHD (Heifetz

et al. 2015) systems.
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In standard descriptions of turbulence and quasilinear transport calcu-

lations, it is common practice to neglect stable modes given their exponential

decay from a small initial value. In this paper we account for the nonlinear

drive of the stable mode by the unstable mode and investigate its impact

on the evolution of the system.

2.3 Eigenmode Projection

In previous calculations of stable mode excitation (Terry et al. 2006;

Makwana et al. 2011), fluctuations from equilibrium were represented by

Figure 2.2 Equilibrium (left column) compared with velocity profiles of the unstable
φ1 (middle column) and the stable φ2 (right column) at wavenumbers k = 0.4 (top row)
and k = 1 (bottom row) plotted over one wavelength in x and from z = −2 to z = 2.
Streamlines are plotted with color indicating flow speed. The first row is in the unstable
range, where φ1 grows exponentially while φ2 decays exponentially. The second row is a
marginally stable wavenumber, where both φ1 and φ2 oscillate without any growth [see
Fig. 2.1].
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a vector f(k, t) whose components were the Fourier-transformed dynamical

quantities. Because the systems were homogeneous, the linearized, Fourier-

transformed PDEs became ODEs of the form ḟ = Df with the dynamics at

each wavenumber k linearly decoupled. Thus, the eigenmodes of the system

were the eigenvectors fj of the N ×N matrix D, and arbitrary states could

be expanded as linear combinations of the eigenvectors:

f(k, t) =
N∑

j=1

βj(k, t)fj(k, t), (2.8)

where βj(k, t) is the component of f in the eigenmode basis. Also called

eigenmode amplitudes, the functions βj are not specified by the solutions of

the linearized equations except through an initial condition. Under linear

evolution the stable modes subsequently decrease to insignificance. However,

the full nonlinear ODEs can readily be written in terms of the eigenmodes

by substituting the eigenmodes for the dynamical quantities using Eq. (2.8).

From there, separate equations for each β̇j can be derived. These equations

for β̇j are equivalent to the original PDEs, but they describe the nonlinear

evolution of the system in terms of the eigenmode amplitudes. We refer to

this process, both the expansion of the perturbations and the manipulation

of their governing equations, as an eigenmode decomposition. The equations

for β̇j provide powerful insight into the system. The nonlinearities that

couple the dynamical fields at different scales become nonlinearities that
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couple eigenmodes at different wavelengths. Thus, it was shown (and borne

out by many simulations, see e.g. Terry et al. 2006; Makwana et al. 2011)

that despite decaying in the linear regime, the stable modes are nonlinearly

driven by the unstable modes.

In these previous calculations, the homogeneous nature of the system

made the set of linear eigenmodes a complete basis: at every time t and

wavevector k, the state vector f could be expanded in a basis of the

eigenmodes [i.e. Eq. (2.8)]. Due to the inhomogeneity of the present system,

the linear solutions are not simply Fourier modes in z, so this system

does not readily lend itself to the vector representation of Terry et al.

(2006). Moreover, Eq. (2.1) admits only two eigenmodes which are expected

not to span arbitrary perturbations that satisfy the boundary conditions

(Case 1960). So the true state of the system cannot be written exactly

in the form of Eq. (2.8) with N = 2. In order to properly describe the

evolution of the system given an arbitrary initial condition, the system could

be expanded in appropriate orthogonal polynomials or investigated as an

initial value problem with additional time-dependent basis functions that

are linear solutions of the problem. Previous work has demonstrated that

for inviscid shear flows, the initial value calculation leads to the “discrete”

eigenmodes with time-dependence exp[iωt] described in the previous section,
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and an additional set of “continuum” modes (Case 1960). These continuum

modes either oscillate with frequency k or decay algebraically. For the

present calculation we only consider perturbations that can be expressed as

linear combinations of the two discrete eigenmodes φ1 and φ2, representing

a truncation of the complete system. If we are able to demonstrate a

significant impact from φ2, that suffices to demonstrate the importance of

stable modes, relative to existing models that only consider the unstable

mode.

By focusing on perturbations that are linear combinations of φ1 and

φ2 (i.e. limiting ourselves to the subspace spanned by φ1 and φ2), the

vector representation and invertible linear transformation between the state

of the system and the eigenmode amplitudes of Terry et al. (2006) can

be recovered. Consequently, the governing Eq. (2.1) can be manipulated

to derive nonlinear equations that describe the evolution of the eigenmode

amplitudes and their interactions. The method relies on the jump conditions

given in Eq. (2.4). Since the jump conditions for one eigenmode differ from

those for the other eigenmode, one can form an invertible map between

the discontinuity of dφ/dz at each interface and the amplitude of each

eigenmode. Additionally, because there are two jump conditions that will

serve as our dynamical quantities, only the two eigenmodes of the previous
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section are needed to construct an invertible map between eigenmodes

and dynamical quantities. To derive equations describing the nonlinear

interaction between the eigenmodes, we start by deriving nonlinear jump

conditions.

First, let φ̂(k, z, t) = F [Φ(x, z, t)] be the Fourier transformed stream

function, and assume

φ̂(k, z, t) = β1(k, t)φ1(k, z) + β2(k, t)φ2(k, z). (2.9)

The nonlinear jump conditions are obtained by performing the same steps

that led to Eq. (2.4) without dropping nonlinear terms (and explicitly taking

the Fourier transform rather than assuming normal modes). Taking the

Fourier transform and integrating from ±1− ε to ±1 + ε with ε→ 0 yields

∂

∂t
∆̂± ± ik∆̂± ± ikφ̂(k,±1) + lim

ε→0
ik

∞∫

−∞

dk′

2π

[
d

dz
φ̂(k′, z)

d

dz
φ̂(k′′, z)

]±1+ε

±1−ε
= 0,

(2.10)

where k′′ ≡ k − k′, while

∆̂±(k, t) ≡ lim
ε→0

[
d

dz
φ̂(k,±1 + ε, t)− d

dz
φ̂(k,±1− ε, t)

]

= β1(k, t)∆±1(k) + β2(k, t)∆±2(k)

and

∆±j(k) ≡ lim
ε→0

[
d

dz
φj(k,±1 + ε)− d

dz
φj(k,±1− ε)

]
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are the discontinuities in dφ̂/dz and dφj/dz at z = ±1. With φ̂ given by

Eq. (2.9) and φj given by Eq. (2.6), one can show that

φj(k, 1) =
−∆+j

2|k| −
∆−j

2|k|e2|k| ,

and

φj(k,−1) =
−∆+j

2|k|e2|k| −
∆−j
2|k| .

The φ̂(k,±1) term in Eq. (2.10) can then be written in terms of ∆̂± to yield

∂

∂t

(
∆̂+

∆̂−

)
= D

(
∆̂+

∆̂−

)
+

(
N+

N−

)
, (2.11)

with

D = ik

(
1

2|k| − 1 e−2|k|

2|k|
−e−2|k|

2|k| − 1
2|k| + 1

)
, (2.12)

and N± representing the nonlinearities in Eq. (2.10). Note that taking

N± → 0 and ∂/∂t → iω reduces this to the linear system solved in the

previous section.

We now have all of the necessary tools to treat this system in a manner

similar to the previously-mentioned calculations (Terry et al. 2006; Makwana

et al. 2011). Using our definitions for ∆̂± and ∆±j, the z-derivative of

Eq. (2.9) evaluated between z = ±1 + ε and z = ±1− ε with ε→ 0 is

(
∆̂+

∆̂−

)
= M

(
β1

β2

)
, (2.13)
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where

M =

(
∆+1 ∆+2

∆−1 ∆−2

)
= −2|k|e|k|

(
1 1

b1 b2

)
, (2.14)

and bj is given in Eqn. (2.7). Equation (2.13) is equivalent to Eq. (2.8): for

this calculation, the dynamical quantities that we use to specify the state of

the system are ∆̂±, and their eigenmode structure is given by the columns of

the matrix M. The governing nonlinear PDE, Eq. (2.1) has been rewritten

as a system of nonlinear ODEs, Eq. (2.11). The linearized system of ODEs

(Eq. (2.11) with N± → 0) can be diagonalized: substituting ∆̂± for βj via

Eq. (2.13) and multiplying by M−1 on the left gives

(
β̇1

β̇2

)
= M−1DM

(
β1

β2

)
, (2.15)

where the matrix M−1DM is diagonal with entries iωj.

The nonlinear interactions between the eigenmodes can now be inves-

tigated. Applying the steps that led to Eq. (2.15) to the full, nonlinear

Eq. (2.11) yields

(
β̇1

β̇2

)
= M−1DM

(
β1

β2

)
+ M−1

(
N+

N−

)
, (2.16)

where, again, N± are the nonlinearities in Eq. (2.10). Using Eq. (2.9) and

the forms for φj given by Eq. (2.6), N± can be written in terms of products

of the form βiβj with i, j each taking values 1, 2. Equation (2.16) then
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becomes

β̇1(k) = iω1(k)β1(k)

+

∞∫

−∞

dk′

2π

[
C1(k, k

′)β1(k
′)β1(k

′′) + C2(k, k
′)β1(k

′)β2(k
′′)

+C3(k, k
′)β1(k

′′)β2(k
′) + C4(k, k

′)β2(k
′)β2(k

′′)

]
,

(2.17)

β̇2(k) = iω2(k)β2(k)

+

∞∫

−∞

dk′

2π

[
D1(k, k

′)β1(k
′)β1(k

′′) +D2(k, k
′)β1(k

′)β2(k
′′)

+D3(k, k
′)β1(k

′′)β2(k
′) +D4(k, k

′)β2(k
′)β2(k

′′)

]
.

(2.18)

The coefficients Cj, Dj arise from writing the nonlinearitiesN± in the basis of

the linear eigenmodes, so their functional forms include information about

both the linear properties of the system and the nonlinearities N±. The

exact expressions for Cj, Dj are given in the Appendix, where it is shown

that C2(k, k
′) = C3(k, k − k′), so that the C3 integral is equal to the C2

integral. Equations (2.17) and (2.18) are equivalent to Eq. (2.11), but they

directly show how β1 and β2 interact.

An analogy can be made here to the use of Elsässer variables in in-

compressible, homogeneous MHD turbulence, which are a familiar example

of an eigenmode decomposition that makes explicit the nonlinear interac-

tion of the linear eigenmodes. The linearized equations have as solutions



43

counterpropagating, noninteracting waves of the form z± = v±b/(4πρ0)
1/2.

Expressing the nonlinear equations in terms of z±, the nonlinearity in the

equation for ∂z±/∂t is z∓ · ∇z±, which describes the nonlinear interactions

between linearly noninteracting modes. In the present calculation, the lin-

early noninteracting φ1, φ2 are comparable to z±, and the terms proportional

to β1(k
′)β2(k

′′) and β1(k
′′)β2(k

′) are comparable to z∓ · ∇z±. However, un-

like the z± equations, the β̇j equations include other nonlinear terms that

are proportional to β1(k
′)β1(k

′′) and β2(k
′)β2(k

′′). If all of the nonlinearities

are zero except for the C1 term, then the evolution of β1(k) is just a com-

bination of its linear drive iω1(k) and three-wave interactions with β1(k
′)

and β1(k − k′), allowing φ1 to saturate through a Kolmogorov-like cascade

to smaller scales. This is effectively the assumption of standard quasilinear

calculations of momentum transport, where only φ1, ω1 are considered. Fig-

ure 2.3 shows some of the nonlinear coupling coefficients plotted over a range

of wavenumbers. Since D1, C2, and C3 are not identically zero, there is some

interaction between the eigenmodes. Systems where such interactions have

been identified are all gyroradius-scale, quasihomogeneous systems driven

by drift-wave instabilities (Terry et al. 2006; Makwana et al. 2011). Equa-

tions (2.17) and (2.18) represent a demonstration that these interactions

occur for larger-scale, inhomogeneous plasmas and neutral fluids.
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2.4 The Threshold Parameter

By comparing the nonlinearities that transfer energy to stable modes

with those that cause the Kolmogorov-like cascade of energy to small

scales, one can investigate how important stable modes are in instability

saturation. A quantity known as the threshold parameter Pt has been used

to evaluate the relative importance of the stable eigenmodes in situations

where instability saturation is described by eigenmode-projected ODEs.

The threshold parameter Pt estimates the relative importance in saturation

of the nonlinearities responsible for energy transfer to the stable mode

versus the nonlinearity of the forward cascade (Terry et al. 2006). If Pt

is small compared to unity, it indicates that the instability saturates via

a Kolmogorov-like transfer of energy to smaller scales, and only the term

Figure 2.3 Three of the eight nonlinear coupling coefficients in Eqs. (2.17) and (2.18),
C1, C2, and D1, evaluated over the most relevant scales. Color indicates absolute values of
the coefficients. The coefficients are all roughly the same magnitude, indicating significant
coupling between stable and unstable eigenmodes.
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in Eq. (2.8) corresponding to the most unstable eigenmode needs to be

included to accurately describe the system. If Pt & 0.3, it was found that

the transfer of energy from the unstable mode to other modes at similar

scales is an important mechanism in saturation. In that case, additional

terms in Eq. (2.8) must therefore be included (Makwana et al. 2011).

The quantity Pt is the ratio of the C1β1β2 and C2β1β1 terms in Eq. (2.17)

and therefore includes information about both linear and nonlinear proper-

ties of the system. In previous work (Terry et al. 2006; Makwana et al. 2011),

simplifying assumptions – such as treating growth rates γj = −Im(ωj) as

independent of wavenumber – allowed the threshold parameter to be written

as

Pt =
2D1C2

C2
1(2− γ2/γ1)

(2.19)

for γ2 < 0. This form of Pt is useful because it illustrates how Pt depends

on different parameters of the system: the size of Pt relative to unity is

determined by the ratios D1C2/C
2
1 and γ1/γ2. When the former is small,

stable modes are only weakly coupled to unstable modes and have little

impact on saturation dynamics. When the latter is small, stable modes

decay too quickly to achieve significant amplitude by the time the instability

saturates unless D1C2/C
2
1 � 1 and compensates. Previous work evaluated

this form of Pt in several systems and found that whenever Pt is at least



46

a few tenths, energy transfer to stable modes becomes comparable to the

energy injection rate of the instability (Makwana et al. 2011). Note that in

the system considered here |γ1/γ2| = 1, and numerically evaluating Cj, Dj

shows that D1 and C2 are of the same order as or even larger than C1 [see

Fig. 2.3]. These features alone yield Pt ≈ 0.7, which implies stable modes

are important for KH saturation.

Here we extend previous analyses of Pt by including the full wavenum-

ber dependence of γj, Cj, and Dj. Consider the evolution of the system

from a small initial amplitude βi. When amplitudes are small every non-

linear term is negligible, so the dynamics are linear with β2 decaying and

β1 growing exponentially at every wavenumber. Eventually couplings in

∫
(dk′/2π)D1(k, k

′)β1(k
′)β1(k − k′) dominate in Eq. (2.18). This occurs in

the linear phase, before saturation, because nonlinearities dominate the de-

caying linear response of β2 long before matching the growing linear response

of β1. Thus, Eq. (2.18) can be approximated as

β̇2(k) = iω2(k)β2(k) +

∞∫

−∞

dk′

2π
D1(k, k

′)β1(k
′)β1(k

′′). (2.20)

Note that for these times β2 � β1 therefore the D1 terms are the largest of

the Dj terms. Since the Cj nonlinearities have not reached the amplitudes

of the growing linear terms, β1 can be approximated as βi exp[iω1t]. These

approximations are referred to as the parametric instability approximations
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(Terry et al. 2006). Then Eq. (2.20) is solved by

β2(k, t) =

∞∫

−∞

dk′

2π

D1(k, k
′)β2

i

i (−ω2(k) + ω1(k′) + ω1(k − k′))
[
ei(ω1(k′)+ω1(k−k′))t − eiω2(k)t

]

+ βie
iω2(k)t. (2.21)

In assessing Pt the above integral is only taken over unstable wavenumbers,

as they drive β2 more strongly than marginally stable modes.

Figure 2.4 Nonlinear terms in Eq. (2.17) at saturation for k = 0.4 and βi = 0.01, with k′

and k − k′ ranging from −0.6 to 0.6. The C1 term is responsible for the Kolmogorov-like
saturation of the instability by energy transfer to unstable modes at smaller wavelengths.
The C2 term represents the previously-neglected coupling between unstable modes at k
and k′ with stable modes at k′′. The threshold parameter is evaluated by dividing the peak
value of the C2 term by the peak value of the C1 term. Here we find Pt ≈ 6, indicating
that stable modes are important in KH saturation.
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To evaluate Pt, the ratio of the largest β1β2 term and the largest β1β1

term in Eq. (2.17) is taken at the time of saturation ts:

Pt =

[
max |2C2β1(k

′)β2(k
′′)|

max |C1β1(k′)β1(k′′)|

]

t=ts

, (2.22)

where ts is defined as the time at which one of the nonlinearities in Eq. (2.17)

reaches the same amplitude as the linear term. Figure 2.4 shows the size of

these terms at saturation for k = 0.4 with an initial amplitude of βi = 0.01.

We choose k = 0.4 because it is the most unstable wavenumber and is

therefore the wavenumber of the most dominant unstable mode leading into

saturation. From Fig. 2.4, it is inferred that Pt ≈ 6, indicating that even

before the nominal saturation time energy transfer to stable modes has

become as important to the saturation of the unstable mode at k = 0.4 as

the Kolmogorov-like transfer to unstable modes at other scales.

In previous calculations of Pt, the parameter was independent of the

initial amplitude βi (which is assumed to be the same for each k). However,

in the above evaluation of Pt, we do find that it depends on βi; for instance,

reducing βi to 0.001 yields Pt ≈ 15. In previous calculations, the lack of

dependence of Pt on βi is an artifact of treating growth rates as independent

of wavenumber (Terry et al. 2006). In considering Eq. (2.17) for the most

unstable wavenumber, both β1(k
′) and β1(k

′′) were assumed to grow at the

same rate as the most unstable mode, when in fact three-wave interactions
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require k 6= k′. When including wavenumber dependence, these nonlinear

terms will necessarily grow at less than twice the peak growth rate. On the

other hand, stable modes near k = 0 can be driven by D1β1β1 terms where

one of the driving modes is near k = 0.4 and the other is near k = −0.4.

Thus, our inclusion of the wavenumber dependence of ωj causes β2 to grow

large enough that Eq. (2.20) becomes invalid before saturation time. This

makes the precise value of Pt less meaningful, as the stable modes have

grown so large that the approximations made in obtaining Pt are invalid.

However, the size of β2 relative to β1 and the comparable amplitudes of C2

and C1 imply Pt & 1, and therefore Pt & 0.3 is still well satisfied.

The above nonlinear analysis demonstrates that energy transfer to sta-

ble modes is significant relative to energy transfer to smaller scales, modify-

ing the usual understanding of instability saturation by a cascade to small

scales. The analysis employs approximations, hence it is instructive to con-

sider a second, complementary form of approximate nonlinear analysis based

on a three-wavenumber truncation of Eqs. (2.17) and (2.18). Such a calcu-

lation complements the Pt analysis because it makes different assumptions.

The Pt analysis makes parametric instability approximations when consid-

ering the evolution of β2 (c.f. Eq. (2.21)), but samples a broad continuum

of wavenumbers. On the other hand, a three-wavenumber truncation makes
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no assumptions about the evolution of the modes, and instead limits the

system to only three wavenumbers that are evolved according to Eqs. (2.17)

and (2.18).

The result of a three-wavenumber truncation is plotted in Fig. 2.5,

showing the time evolution of βj(k, t) obtained by solving Eqs. (2.17) and

(2.18) numerically with only interactions between k = 0.3, k′ = 0.9, and

k − k′ = −0.6 considered. The linear growth phase of β1 is clearly seen,

as is the linear decay and nonlinear driving of β2. The linear growth

phase for β1 ends with both eigenmodes reaching comparable amplitudes,

Figure 2.5 Time evolution of |βj(k, t)| for a three-wavenumber truncation with k =
0.3, k′ = 0.9, and k− k′ = −0.6. As expected from the Pt analysis, the stable mode decays
linearly, then is nonlinearly pumped to an amplitude that is comparable to the unstable
mode.
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consistent with the Pt analysis. Once the stable mode reaches a value that

is comparable to the unstable mode there is continuous exchange of energy

between the two modes. The saturation levels slowly grow as t→∞. That

can be understood as a consequence of the inviscid dynamics in a three-mode

system, in that previous work has demonstrated that a necessary condition

for bounded solutions to three-mode truncations is that the sum of the

growth rates is negative (Terry & Horton 1982). Without viscosity, the

present system does not meet the necessary condition. Note that the time

scale for nonlinear energy exchange is very short compared to the time scale

of the saturation level increase, strongly suggesting that the nonlinearities of

Eqs. (2.17) and (2.18) conserve energy. This calculation demonstrates that

the system can saturate by energy transfer to stable modes, and shows that

the assumptions made regarding the growth of β1 and β2 in the Pt analysis

are reasonable.

As an illustration of the effect of finite β2 on the fluctuating flow,

Fig. 2.6 shows the flows arising from linear combinations of β1 and β2 with

the weight of β2 varied. The flow arising purely from the unstable mode

is strikingly different from the flow that combines β1 and β2 with equal

weights. Regions of hyperbolic flow appear to be less likely for the equally

weighted combination, suggesting that secondary structure generation and
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cascading may be weakened when the stable mode is excited. This will be

the subject of future research.

2.5 Momentum Transport

Reynolds stresses and the associated momentum transport due to

unstable modes tend to broaden the original flow profile. Here we show that

stable modes have the potential to reduce the broadening of the profile. The

transport of momentum in the x direction across the interface at z = 1 is

found by integrating the x-component of the divergence of the stress tensor

Figure 2.6 Examples of superpositions of stable and unstable modes at k = 0.4 plotted
over one wavelength in x and from z = −2 to z = 2 (cf. Fig. 2.2). In the right column, the
unstable and stable modes have an equal contribution to the overall flow. In the top and
bottom rows, the relative phase between the two modes is +π and −π, respectively.
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τij = 〈v1iv1j〉 across the interface. Integrating dτxz/dz across the interface

gives

S = − lim
ε→0

1+ε∫

1−ε

dz〈v1xv1z〉 = − lim
ε→0

1+ε∫

1−ε

dz
d

dz
〈dΦ

dz

∂Φ

∂x
〉

where 〈〉 denotes averaging in x, while v1 is the perturbed velocity. Taking

Φ = F−1[φ̂] with φ̂ = β1φ1 + β2φ2 gives

S =

∞∫

−∞

dk

2π
4k2e2|k|

[
Im(ω∗1)|β1|2 + Im(ω∗2)|β2|2

+Im [(ω∗2 + k)β1β
∗
2 ] + Im [(ω∗1 + k)β2β

∗
1 ]

]
.

(2.23)

When the stable modes are ignored, only the first term contributes to S.

The coefficient 4k2e2|k| is positive, and Eq. (2.5) shows that Im(ω∗1) ≤ 0 and

Im(ω∗2) = −Im(ω∗1), indicating that the transport due to unstable modes

alone is negative, and the second term acts against the first to reduce |S|.

Clearly the amplitude of β2(k) relative to β1(k) has a significant impact

on the momentum transport in this system. The relative phase between

β2(k) and β1(k) determines the contribution of the last two terms. If

|β2(k)| = |β1(k)|, then the first two terms cancel and the transport is entirely

determined by the last two terms. Analysis of other systems shows there are

situations where eigenmode cross correlations significantly affect transport

(Baver et al. 2002; Terry et al. 2009).

To determine the actual properties of S, it is necessary to solve
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Eqs. (2.17) and (2.18) for βj(k) and integrate Eq. (2.23), either analytically

or numerically. This is beyond the scope of the present paper, but will be

considered in the future. In lieu of such solutions, we construct an estimate

of the ratio |β2(k)|/|β1(k)| using the threshold parameter.

In the previous section the threshold parameter was defined as the ratio

of the maximum amplitudes of the C2 terms and the C1 terms in Eq. (2.17)

at the onset of saturation. An estimate of |β2(k)|/|β1(k)| in terms of Pt is

obtained by taking

Pt ∼
|2C2β1(k

′)β2(k
′′)|

|C1β1(k′)β1(k′′)|
= 2

∣∣∣∣
C2

C1

∣∣∣∣
|β2(k

′′)|
|β1(k′′)|

∼ 2

∣∣∣∣
β2(k)

β1(k)

∣∣∣∣ .

While the threshold parameter estimates the relative amplitudes of the

modes, it does not capture information about their cross-phase. Taking

β2 = β1 exp[iθ12]Pt/2 allows S to be rewritten as

S =

∞∫

−∞

dk

2π
4k2e2|k||β1|2

{
Im(ω∗1)

(
1− P 2

t

4

)
+
Pt
2

Im [ω∗1(2i sin(θ12))]

}
.

(2.24)

Due to the form of ω1 [see Fig. 2.1], the first term is only nonzero for

|k| . 0.64, and the second term is only nonzero for |k| & 0.64. It is clear

that Pt ∼ 1 reduces the magnitude of the first term, while the contribution

of the second term to S depends significantly on the cross-phase θ12 between

the eigenmodes.
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Having shown that momentum transport can be affected by stable mode

activity, we next summarize the main findings of this paper.

2.6 Conclusion

Shear-flow instabilities are widely studied due to their potential to

drive turbulence in systems where the turbulent transport of momentum,

particles, and heat are of interest. While the linear regime of these

instabilities are generally well-understood, saturation and the resulting

nonlinear flows are difficult to model. We have presented a nonlinear analysis

of an unstable shear layer with piecewise-linear shear flow, showing that

the complex conjugate stable linear eigenmode is excited nonlinearly and

strongly affects saturation. This result is significant because it represents

the first demonstration that nonlinear excitation of linearly stable modes

is an important aspect of saturation in global-scale unstable plasma and

hydrodynamic systems. Previous studies were limited to quasihomogeneous

systems on gyroradius scales (Terry et al. 2006; Makwana et al. 2011).

A critical aspect of this work is the development of a mapping technique

that allows analytical saturation analyses derived for spatially homogeneous

systems to be applied to the strongly inhomogeneous situation of shear flow

instability.

Assuming the flow is a linear combination of the linear eigenmodes
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allows the global state of the system to be described in terms of its

behavior at the edges of the shear layer (as is also done to determine the

dispersion relation). The nonlinearity, originally written in terms of flow

components and their spatial derivatives, is then written in terms of the

eigenmodes to demonstrate that unstable modes nonlinearly pump stable

modes. This allows the eigenfunctions of this system to be treated similarly

to the eigenvectors of previous systems. Using a parameter that quantifies

the threshold for a stable mode to impact saturation, we have estimated

the impact of stable modes on instability saturation and found it to be

significant.

Analysis of the flow associated with stable modes indicates that, at

the predicted saturation levels, the fluctuating flow undergoes significant

topological changes relative to flows characterized by the unstable mode

alone. Such changes may affect the propensity for the turbulent flow

structure to generate secondary structures through transient amplification

and other processes. Because the system described here is inviscid, this

work indicates that stable modes have the potential to modify the evolution

of instabilities even when they are not subject to dissipation.

Finally, we consider the contribution of stable modes to momentum

transport and give an estimate in terms of the threshold parameter, demon-
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strating that stable modes can significantly reduce the broadening of the

shear layer, thereby counteracting the effect of the unstable modes. One

may similarly expect that stable modes can affect other transport channels

such as matter entrainment and heat transport. This line of inquiry will be

left for future investigations.

The authors would like to thank F. Waleffe for valuable discussions

and insights. Partial support for this work was provided by the Wisconsin

Alumni Research Foundation and the U S Department of Energy, Office of

Science, Fusion Energy Sciences, under award No. DE-FG02-89ER53291.

A Coupling Coefficients

In Eqs. (2.17) and (2.18), the nonlinear coupling coefficients Cj, Dj,

which are obtained by expressing the nonlinearities of Eq. (2.16) in terms
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of the eigenmode amplitudes βj, are as follows:

C1 = α
[
(b2b

′
1 + b′′1)e2|k′′| + (b2b

′′
1 + b′1)e

2|k′|
]

C2 = α
[
(b2b

′
1 + b′′2)e2|k′′| + (b2b

′′
2 + b′1)e

2|k′|
]

C3 = α
[
(b2b

′
2 + b′′1)e2|k′′| + (b2b

′′
1 + b′2)e

2|k′|
]

C4 = α
[
(b2b

′
2 + b′′2)e2|k′′| + (b2b

′′
2 + b′2)e

2|k′|
]

D1 = −α
[
(b1b

′
1 + b′′1)e2|k′′| + (b1b

′′
1 + b′1)e

2|k′|
]

D2 = −α
[
(b1b

′
1 + b′′2)e2|k′′| + (b1b

′′
2 + b′1)e

2|k′|
]

D3 = −α
[
(b1b

′
2 + b′′1)e2|k′′| + (b1b

′′
1 + b′2)e

2|k′|
]

D4 = −α
[
(b1b

′
2 + b′′2)e2|k′′| + (b1b

′′
2 + b′2)e

2|k′|
]
,

(A1)

where

α =
ik|k′||k′′|e−|k|−|k′|−|k′′|

2|k|(b1 − b2)
,

with b′j ≡ bj(k
′) and b′′j ≡ bj(k

′′). For convenience, the definition of bj(k) is

repeated here:

bj = e2|k|2|k|(ωj + k)− k
k

.

Notice that α(k, k′) = α(k, k − k′) and C3(k, k
′) = C2(k, k − k′). Thus,

changing the integration variable to k′′ = k − k′ in the C3 integral yields
∫ ∞

−∞

dk′

2π
C3(k, k

′)β1(k
′′)β2(k

′) =

∫ ∞

−∞

dk′

2π
C2(k, k

′′)β1(k
′′)β2(k

′)

=

∫ ∞

−∞

dk′′

2π
C2(k, k

′′)β1(k
′′)β2(k − k′′)

=

∫ ∞

−∞

dk′

2π
C2(k, k

′)β1(k
′)β2(k − k′),
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so the C3 and C2 integrals in Eq. (2.17) are identical.
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Abstract

A linearly unstable, sinusoidal E × B shear flow is examined in the gy-

rokinetic framework in both the linear and nonlinear regimes. In the linear

regime, it is shown that the eigenmode spectrum is nearly identical to hydro-

dynamic shear flows, with a conjugate stable mode found at every unstable

wavenumber. In the nonlinear regime, turbulent saturation of the instability

is examined with and without the inclusion of a driving term that prevents

nonlinear flattening of the mean flow, and a scale-independent radiative

damping term that suppresses the excitation of conjugate stable modes.

From a variety of analyses, the nonlinear state is found to have a significant

component associated with stable modes. The role of these modes is inves-

tigated through a simple fluid model that tracks how momentum transport

and partial flattening of the mean flow scale with the driving term. From

this model it is shown that, except at high radiative damping, stable modes

play an important role in the turbulent state and yield significantly im-

proved quantitative predictions when compared with corresponding models

neglecting stable modes.
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3.1 Introduction

The prevalence of sheared flows in diverse systems has motivated

their study for over a century. Their potential to drive instabilities and

turbulence in fluids and plasmas is central to angular momentum transport

in astrophysical disks (Balbus & Hawley 1998; Vanon & Ogilvie 2016),

to transport in the Earth’s magnetosphere (Faganello & Califano 2017),

and possibly to the generation and saturation of confinement-modifying

zonal flows in fusion devices (Rogers et al. 2000). The linear stability

of simple shear flow configurations has been thoroughly investigated from

linear equations (Chandrasekhar 1961; Drazin & Reid 1981) and provides

a rough understanding of the nature of more complex flow profiles early

in their development, before unstable perturbations grow too large (Gaster

et al. 1985; Palotti et al. 2008). However, as these flows develop beyond the

regime of validity of linearized models, and nonlinear interactions between

different components of the fluctuation become important, capturing or

understanding their behavior with any set of constructs based on linear

analysis becomes problematic (Liou & Morris 1992; Nikitopoulos & Liu 2001;

Horton et al. 1987).

Instead, studies generally rely on direct numerical simulations to in-
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vestigate relevant physical effects (Faganello & Califano 2017; Palotti et al.

2008; Henri et al. 2013). In many cases of interest, these methods can-

not produce solutions for physically relevant parameters, such as the high

Reynolds numbers found in astrophysical systems. This motivates the de-

velopment of scaling models that can inform how the system extrapolates to

parameter regimes inaccessible to simulations. Valid scaling models require

an understanding of the physics of all relevant phenomena, including tur-

bulent responses that modify the unstable flow, like nonlinear fluctuation

structures, cascades, and momentum transport.

Regarding nonlinear processes that become relevant as the linear

growth phase ends, recent analytical work on shear-flow instability satura-

tion has demonstrated the importance of fluctuation dissipation that arises

at large scales due to excitation of stable modes (Fraser et al. 2017). When

an unstable shear flow is perturbed from equilibrium, these linear modes are

generally a part of the initial perturbation, decaying from their small initial

amplitude. Given this initial decay, stable modes are typically ignored in

constructing reduced nonlinear models that draw from linear physics (Liou

& Morris 1992; Nikitopoulos & Liu 2001; Horton et al. 1987). However,

nonlinear interactions with unstable modes can drive stable modes to large

amplitude. Because they are linearly stable, they provide a route for energy
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to be removed from fluctuations at large scales, before it is able to cascade

to small scales, thereby modifying the flow, its spectrum, and its transport

(Fraser et al. 2017). This represents a significant departure from the usual

picture of instability-driven turbulence, where energy injection by unstable

modes is assumed to be balanced by conservative nonlinear energy transfer

to small, dissipative scales.

While it has been shown that nonlinear interactions with large-scale

stable modes can be important in saturating shear-flow instabilities, their

amplitude and contribution to the fluctuating flow and momentum transport

in fully-developed turbulence remains an open question, which we pursue

in this paper. Additionally, we explore whether reduced models of shear-

flow-driven turbulence that are based solely on the linear instability might

be improved by including the effects of large-scale stable modes. This is

a natural expectation given their importance in saturating the instability,

their introduction of a large-scale linear energy sink, and their potential to

modify momentum transport. This is also motivated by recent work in the

context of instability-driven turbulence in fusion devices, where reduced

turbulence models that include details of stable modes and instability

saturation physics have been shown to be effective (Terry et al. 2018; Hegna

et al. 2018; Whelan et al. 2018).
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We address these questions by performing direct numerical simulations

of an unstable shear flow that develops into turbulence, and comparing

the contribution of different linear modes to the turbulent flow and the

Reynolds stress. Our simulations are performed using the gyrokinetic

turbulence code Gene1 (Jenko et al. 2000), which has previously been used

to examine stable modes in other turbulent systems (Hatch et al. 2011;

Terry et al. 2014), and includes both initial value and eigenvalue solvers.

This allows us to benchmark our calculated growth rates against previous

gyrokinetic studies of the same system (Rogers & Dorland 2005), as well

as investigate differences between shear flow instabilities in hydrodynamics

and gyrokinetics with regards to both the linear mode spectrum and

instability saturation. In particular, while it is understood that all unstable,

inviscid, incompressible, two-dimensional (2D) hydrodynamic flows include

one stable mode for every unstable mode (Drazin & Reid 1981), and previous

work has shown that these stable mode are nonlinearly driven in the fluid

system (Fraser et al. 2017), whether these results apply to the gyrokinetic

case as well has not been explored. To allow for more direct comparisons

with previous work, all simulations presented in this paper are effectively

2D, with no variations in the direction of the strong guide field (kz = 0).

1See http://www.genecode.org for code details and access.
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The flow we examine is a sinusoidally-varying E×B parallel shear flow

with periodic boundary conditions. The hydrodynamic counterpart to this

flow is often referred to as Kolmogorov flow when it is maintained by a

constant forcing term (Platt et al. 1991; Musacchio & Boffetta 2014; Lucas

& Kerswell 2014). This flow profile is particularly relevant to astrophysical

disks, where its Kelvin-Helmholtz (KH) instability is studied as a saturation

mechanism for the magnetorotational instability (Goodman & Xu 1994;

Pessah & Goodman 2009; Pessah 2010; Latter et al. 2009, 2010; Longaretti &

Lesur 2010) or its collisionless counterpart (Squire et al. 2017), and in fusion

devices, where it is studied as a potential secondary and tertiary instability

to streamers and zonal flows (Rogers et al. 2000; Kim & Terry 2010). In

order to admit a quasi-stationary state of driven turbulence where energy

dissipation is balanced by energy injection, we continually reinforce the

mean flow using a Krook operator previously employed similarly to reinforce

current gradients in tearing mode studies (Pueschel et al. 2014), and referred

to as a linear relaxation term in studies of barotropic jets (Marston et al.

2008). With this forcing term, the system bears a strong resemblance to

Kolmogorov flow (Platt et al. 1991; Musacchio & Boffetta 2014; Lucas &

Kerswell 2014), with the exception that it is not a constant forcing. From

a numerical perspective, Kolmogorov flow presents a convenient choice of
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unstable shear flow to study due to its simple description in a Fourier basis

and the lack of no-slip boundary conditions that could otherwise generate

boundary layers. This also allows us to address whether the saturation

physics active in the free shear layer (Fraser et al. 2017) is applicable to a

driven periodic shear flow.

Our simulations also include damping terms in the form of hyperdissi-

pation and scale-independent radiative damping. The form of the radiative

damping term is such that it damps every mode equally. In systems with

pairs of stable and unstable modes, this disproportionately affects the stable

mode amplitude relative to the unstable one in the nonlinear state (Terry

et al. 2009). Thus, varying the degree of radiative damping in our system

allows us to assess whether different shear-driven turbulence regimes exist

with significantly different stable mode effects, and how these regimes might

differ.

The remainder of this paper is organized as follows. Section 3.2 starts

with a brief review of hydrodynamic parallel shear flows for comparison with

our gyrokinetic results, as well as some unique aspects of the particular flow

profile studied here, followed by a discussion of the numerical implementa-

tion used in our work, including the specific forms of forcing and dissipation.

In Sec. 3.3 we show the full eigenmode spectrum for the gyrokinetic KH in-
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stability. A description of the nonlinear evolution of the flow is presented in

Sec. 3.4, where we discuss saturation and decaying turbulence when forcing

is absent, driven turbulence with external forcing, and turbulent momentum

transport in this system. Section 3.5 examines the turbulence in terms of

the role played by the linear eigenmodes, and compares reduced descrip-

tions and scaling models of the turbulence with and without stable modes.

Conclusions are presented in Sec. 3.6.

Throughout this paper, we adopt the notation that Â(x, ky) denotes

the Fourier transform in y of A(x, y), and Ã(kx, ky) denotes the Fourier

transform in x and y.

3.2 Shear Flow Instability

3.2.1 Rayleigh’s Stability Equation

The stability of parallel shear flows is generally investigated by exam-

ining infinitesimal perturbations about equilibrium solutions to the Navier-

Stokes equation. When considering a 2D, inviscid, incompressible flow that

is perturbed from an equilibrium, the vorticity equation becomes

∂

∂t
∇2φ+ V

∂

∂y
∇2φ− d2V

dx2

∂φ

∂y
+
∂φ

∂x

∂

∂y
∇2φ− ∂φ

∂y

∂

∂x
∇2φ = 0, (3.1)

where V (x) is the y-directed equilibrium shear flow, and φ(x, y, t) is the

streamfunction of the perturbation v = ∇φ × ẑ. The linear dynamics can
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then be explored by dropping the nonlinearities and using the normal mode

ansatz

φ(x, y, t) =
∑

ky

∑

j

φ̂j(x, ky)e
i(kyy+ωjt), (3.2)

yielding

(ωj + kyV )

(
∂2

∂x2
− k2

y

)
φ̂j − kyφ̂j

d2V

dx2
= 0. (3.3)

Equation (3.3) is known as Rayleigh’s stability equation, or as the Orr-

Sommerfeld equation when the effect of viscosity on φ is included. It

can be solved as an eigenvalue problem, yielding a set of eigenvalues ωj

and eigenmodes φ̂j, with j enumerating the eigenmodes at a given ky.

The eigenvalue ωj is complex, with real frequency Re(ωj) and growth rate

γj = −Im(ωj). If any eigenmode has a positive growth rate, the flow is

unstable. Furthermore, taking the complex conjugate of Eq. (3.3) shows

that for each unstable solution there exists a stable solution with equal and

opposite growth rate (Drazin & Reid 1981). Previous work (Fraser et al.

2017) demonstrated that nonlinear interactions with these stable modes

play an important role in saturating the growth of unstable modes. In the

present work we perform nonlinear simulations of an unstable shear flow and

examine the role played by stable modes beyond the onset of saturation.



71

3.2.2 Kolmogorov Flow

One unstable flow profile of relevance in fusion and astrophysical

systems is a sinusoidal equilibrium flow with periodic boundary conditions

(Goodman & Xu 1994; Pessah & Goodman 2009; Pessah 2010; Latter et al.

2009, 2010; Longaretti & Lesur 2010; Squire et al. 2017; Vanon & Ogilvie

2016; Rogers et al. 2000; Rogers & Dorland 2005). For a sinusoidal flow

profile V (x) = V0 cos(keq
x x) in a periodic domain, Eq. (3.3) lends itself well

to being solved using spectral methods. Defining φ̃j(kx, ky) as the Fourier

series expansion of φ̂j(x, ky), the Fourier representation of Eq. (3.3) is

ωj(k
2
x + k2

y)φ̃j +
kyV0

2

[
(k2
x − 2kxk

eq
x + k2

y)φ̃
−
j + (k2

x + 2kxk
eq
x + k2

y)φ̃
+
j

]
= 0,

(3.4)

where φ̃±j ≡ φ̃j(kx ± keq
x , ky). Equation (3.4) immediately demonstrates

that each eigenmode exhibits a discrete, comb-like structure when viewed

through a Fourier transform: for a given eigenmode φ̂j(x, ky), if its Fourier

transform φ̃j(kx, ky) is nonzero at some kx, then it is also nonzero at

kx + nkeq
x for every integer n (though φ̃j is still expected to fall off at

large |kx|, so that calculations with a finite number of kx can be expected

to capture the structure well). This property of the system will have

important consequences in later sections when we compare simulations with

different box sizes, and when we explore the possibility of approximating
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the turbulent state by truncating the summation over j in Eq. (3.2) to a

reduced number of modes.

3.2.3 Numerical implementation and benchmarking

We perform simulations of a KH-unstable sinusoidal E ×B flow using

the gyrokinetic framework (Brizard & Hahm 2007) as implemented in

the Gene code (Jenko et al. 2000). The gyrokinetic framework applies

to systems with a strong guide field, where the parallel length scale of

fluctuations is much larger than the perpendicular length scale, and the

relevant frequencies are much smaller than the ion cyclotron frequency. The

use of gyrokinetics for this work is motivated by Gene’s unique tools for

performing eigenmode decompositions (Hatch et al. 2011; Terry et al. 2014).

We simulate a system with two spatial dimensions, with a y-directed flow

that varies sinusoidally in x, a strong guide field in the z direction, and

no variations in z. Our simulation domain is a periodic box of dimensions

Lx × Ly with no curvature or magnetic shear. The flow arises from the

E × B drift of the particles, allowing the electrostatic potential φ to serve

as the streamfunction for the flow. We model the plasma with gyrokinetic

ions and electrons with hydrogen mass ratio, ion and electron background

temperatures Ti = Te, no collisions, and no electromagnetic fluctuations

(plasma β = 0).
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We drive instability with a potential and corresponding distribution

function that vary sinusoidally in x. Gene uses a δf formalism, where

the full distribution function is separated into equilibrium F0 and fluctua-

tion f , with the code solving for the evolution of the fluctuation. We let

f(x, y, v‖, µ, s, t) and f̃(kx, ky, v‖, µ, s, t) denote the (guiding-center) distri-

bution function for species s in real and Fourier space. For the remainder

of this paper, we will generally use notation that suppresses the species and

velocity dependence of f , and instead focus on its dependence on the spatial

coordinates and time.

For benchmarking against previous work (Rogers & Dorland 2005), the

instability is first examined by implementing the sinusoidal flow with low-

amplitude white noise as an initial condition in the fluctuation, formally

evolving the system nonlinearly, with a homogeneous Maxwellian equilib-

rium F0. This corresponds to solving the equation

∂f

∂t
=
{
f, φ̄
}

(3.5)

with a sinusoidal initial condition f(t = 0), φ(t = 0) ∼ sin(keq
x x) and low-

amplitude noise to seed instability. The only term on the right-hand side of

Eq. (3.5),

{
f, φ̄
}
≡ ∂f

∂x

∂φ̄

∂y
− ∂φ̄

∂x

∂f

∂y
, (3.6)

is the E × B nonlinearity, whose Fourier transform becomes
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∑
k′x,k

′
y

(
k′xky − kxk′y

) ˜̄φ(k′x, k
′
y)f̃(kx−k′x, ky−k′y). Here, φ̄ is the gyro-averaged

φ, whose Fourier transform is given by

˜̄φ(kx, ky, µ, s) = J0(
√
k2
x + k2

yρ)φ̃(kx, ky),

where J0 is a Bessel function and ρ is the gyroradius of species s with

magnetic moment µ. The code evolves f according to Eq. (3.5) and

calculates φ using Gauss’s law as described in Merz (2009) and Pueschel

et al. (2011). The normalizations used by Gene are described in Merz

(2009); however, in this paper we will follow the standard convention

used in the fluids community and normalize quantities with respect to the

equilibrium flow velocity V0 and its wavelength keq
x , which are normalized in

the code by Vphys = V ρscs/Lref and kxphys = kx/ρs, where cs is the ion sound

speed and ρs is the ion sound Larmor radius.

Consistent with fluid theory, our system is unstable to perturbations of

the same form as Eq. (3.2) for a range of perturbation wavenumbers ky, with

the growth rate scaling with the base flow amplitude V0. Growth rates from

this formally nonlinear setup are indicated by crosses in Fig. 3.1. For direct

comparison with previous work (Rogers & Dorland 2005), the wavenumber

of the equilibrium keq
x was varied at fixed ky, where perturbations are

unstable for 0 < ky/k
eq
x < 1. For this reason, in the remainder of this

paper we focus our discussion on modes that lie in this range.
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As demonstrated in Fig. 3.1, nonlinear simulations with appropriate

initial conditions can be used to investigate some of the linear dynamics of

this system, such as the growth rate and mode structure of the most unstable

mode at each ky. However, to solve for other linear modes, which are

known to exist in fluid models (Drazin & Reid 1981), terms corresponding

to interaction with the driving flow need to be implemented as a linear

operator, so that Eq. (3.5) can be linearized similarly to Eq. (3.3), in the

0.0 0.2 0.4 0.6 0.8 1.0
ky/k

eq
x

0.0

0.1

0.2

0.3

γ
/k

eq x
V
0

Rogers 2005 (GS2)

Dedalus, Re = 400

Gene lin ky = 0.001

Gene lin ky = 0.05

Gene lin ky = 0.2

Gene NL ky = 0.05

Gene NL ky = 0.2

Figure 3.1 Dispersion relation for the KH instability of a sinusoidal flow V =
V0 cos(keqx x)ŷ. Growth rate γ is plotted against the wavenumber ky of the perturbation,
with γ normalized to the equilibrium shear keqx V0 and ky to the equilibrium wavenumber
keqx . Crosses are obtained from nonlinearly evolving a perturbed sinusoidal flow in Gene
according to Eq. (3.5), while dots are from solving the linear Eq. (3.7). Results compare
well with both previous gyrokinetic simulations (red curve, see Rogers & Dorland 2005) and
hydrodynamic simulations of an equivalent system (magenta triangles). The stabilization
of the ky = 0.2 points at low ky/k

eq
x (i.e. high keqx ) can be attributed to finite Larmor radius

effects. All modes have zero real frequency.
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form

∂f

∂t
= LKH[f ] (3.7)

for a linear differential operator LKH. To that end, we have implemented

the linear operator LKH in the Gene code. This allows computations to be

performed with LKH[f ] on the right-hand side of the equation for ∂tf for

LKH[f ] ≡
{
f0, φ̄

}
+
{
f, φ̄0

}
, (3.8)

where φ0 is the electrostatic potential (streamfunction) for the sinusoidal

base flow, and f0 is the self-consistent distribution function corresponding

to φ0. Specifically, we use

f0(s) =
V0

keq
x

δkx,keqx − δkx,−keqx
2i

F0(s)
qs
Ts
J0

1− Γ0

Γ0
, (3.9)

where δkx,k′x is the Kronecker delta, and F0(s), qs, and Ts are the equilibrium

Maxwellian, charge, and temperature of species s. Here, J0(k⊥ρ), a Bessel

function, and Γ0(b) = e−bÎ0(b) (where Î0 is a modified Bessel function,

b(s) = v2
Tsk

2
⊥Ω−2

s /2, and vTs and Ωs are the thermal velocity and Larmor

frequency of species s) relate to finite Larmor radius (FLR) effects as

detailed in Merz (2009) and Pueschel et al. (2011) This form of f0 is used

for secondary instability tests in tokamak-relevant systems (Pueschel et al.

2013), and yields a sinusoidal φ0(x) corresponding to a sinusoidal equilibrium

flow in the y direction with amplitude V0 and wavenumber keq
x .
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Note that LKH has x dependence but no y dependence, so its eigen-

modes will have Fourier dependence in y and more complex structure in

x, similar to the hydrodynamic case discussed in Sec. 3.2.1. The dots in

Fig. 3.1 are obtained by solving Eq. (3.7), and their agreement with the

corresponding crosses demonstrates successful implementation of the lin-

ear drive. For both setups, convergence checks were performed in spatial

and velocity coordinates. Well-converged growth rates generally require 33

grid points in x, though far fewer points were required for ky/k
eq
x . 0.5.

For the remainder of this paper, results are presented with V0 = 10 and

keq
x = 0.1 using the linearized LKH. A convenient consequence of these pa-

rameters is that times and frequencies have the same value when expressed

in standard Gene normalizations as they do in typical normalizations used

in calculations of unstable shear flow in the fluids community, where t is

often measured in units of (keq
x V0)

−1.

Magenta triangles in Fig. 3.1 are obtained from solving the Orr-

Sommerfeld equation with the Dedalus code2 (Burns et al. 2020) (where keq
x

is the only length scale in the system) with a Reynolds number Re = 400.

Their agreement with the other curves supports the notion that kinetic

effects do not play a significant role in determining the growth rate of this

2See http://dedalus-project.org for details.
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mode. Crosses and dots in Fig. 3.1 corresponding to lower values of ky show

especially good agreement with the fluid results. As each curve represents a

fixed ky with varying keq
x , finite Larmor radius (FLR) effects become more

important as keq
x increases (i.e. as ky/k

eq
x decreases), suggesting that the

reduced growth rates in the ky = 0.2 simulations relative to the fluid results

are due to FLR effects. In non-periodic shear layers, such as V ∼ tanh(x),

it is observed that FLR effects can be stabilizing or destabilizing depending

on the alignment of the equilibrium vorticity and magnetic field (Faganello

& Califano 2017; Henri et al. 2013). Due to the sinusoidal nature of the

flow studied here, the simulation domain includes regions where vorticity

and magnetic field are aligned and where they are anti-aligned, suggesting

that the FLR stabilization observed in our system is qualitatively different

from what is found in shear layers. We speculate that the FLR stabilization

is due to a reduction in the gyro-averaged potential φ̄, as φ̄/φ generally

decreases with increasing k.

3.2.4 Forcing and dissipation terms

In this paper, nonlinear calculations often include additional terms cor-

responding to forcing and dissipation, which we introduce here. Hyper-

dissipation −D⊥(k4
x + k4

y)f̃ (Pueschel et al. 2010) is employed to provide

small-scale dissipation in place of collisions, which are not expected to suf-
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ficiently dissipate small-scale fluctuations at achievable resolutions within

valid limits of collision models. We note that our hyperdissipation term

differs from what is more standard in the fluids community, where k4
x + k4

y

is replaced by (k2
x + k2

y)
2. A second dissipative term −Dradf̃ is spatially

uniform and sometimes referred to as radiative damping or friction (Tobias

et al. 2011). It absorbs energy transferred to large scales (Tobias et al. 2011;

Reynolds-Barredo et al. 2016), while also serving as a “symmetry-breaking”

parameter that adjusts the relative growth rates of linear modes without

modifying their structure.

Finally, we introduce a Krook operator −DKrookδkx,±keqx δky,0f̃ , where δi,j

is the Kronecker delta, to represent forcing of the unstable equilibrium and

prevent it from decaying due to turbulent fluctuations (Pueschel et al. 2014).

Aside from being linear in f and therefore not constant in time, this is

identical to the inhomogeneous body forcing used in studies of Kolmogorov

flow (Platt et al. 1991; Musacchio & Boffetta 2014; Lucas & Kerswell 2014).

While the sign of the Krook operator seems to suggest that it removes

energy from the system, that is merely a consequence of our separation

between equilibrium and perturbation. As explained in Waleffe (1995),

the kinetic energy of the full flow is E =
∫
|V + v|2dxdy, so that if the

(kx, ky) = (keq
x , 0) component of v opposes that of V and is not larger in
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magnitude, as we will see to be the case in Sec. 3.4, terms that appear

to dissipate the “perturbation energy”
∫
|v|2dxdy at that wavenumber will

actually increase the true energy E.

Having constructed a linear operator that yields consistent results for

the most unstable eigenmode’s growth rate, we now address the rest of the

spectrum of eigenvalues.
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Figure 3.2 Eigenvalue spectra for ky/k
eq
x = 2/3 with Lx = λeq (a) and Lx = 2λeq (b).

With Lx = λeq, at each unstable ky, the spectrum includes one unstable and one stable
mode with equal and opposite growth rate γ, as well as a continuous spectrum of marginal
modes corresponding to resonances between the phase velocity ω/ky and equilibrium flow
(Case 1960). As the box size is increased to fit multiple wavelengths of the equilibrium,
additional stable and unstable modes are introduced (Goodman & Xu 1994; Pessah &
Goodman 2009), and additional marginal eigenvalues appear due to an increase in number
of values of V0 cos(keqx x) sampled by the extended grid (thus additional resonances with
ω/ky).
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3.3 Eigenspectrum

3.3.1 Subdominant modes

At each ky there exists a spectrum of eigenmodes f̂j and eigenvalues ωj,

with corresponding potential structures φ̂j. For 0 < ky/k
eq
x < 1, we let j = 1

denote the fastest-growing mode. The KH instability has been investigated

in gyrokinetics before, but previous calculations did not address linear modes

other than f̂1 or their role in saturation. With the linear operator LKH now

implemented in Gene, its full spectrum of eigenmodes and eigenvalues can

be obtained (Kammerer et al. 2008; Hatch et al. 2011; Terry et al. 2014).

Like the inviscid fluid analog, for each ky in the unstable range there exist one

unstable mode, one stable (damped) mode with equal and opposite growth

rate (Drazin & Reid 1981), and a continuum of marginally stable modes

(Case 1960), shown in Fig. 3.2 (a) for ky/k
eq
x = 2/3. The additional degrees

of freedom gained in gyrokinetics relative to a fluid calculation, by taking

into account the velocity-space structure of multiple species, increases the

rank of the discretized linear operator considerably, and leads to many more

marginally stable modes. A single point on the marginally stable continuum

in Fig. 3.2 corresponds to hundreds of eigenmodes (depending on velocity-

space resolution), each with similar electrostatic potentials but significantly

different velocity-space structure.
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Despite the added degrees of freedom in gyrokinetics, there are still only

one stable and one unstable eigenmode per ky for 0 < ky/k
eq
x < 1 when the

box size Lx equals the wavelength of the equilibrium flow, denoted by λeq ≡

2π/keq
x . Consistent with magnetohydrodynamic (MHD) studies of a similar

system (Goodman & Xu 1994; Pessah & Goodman 2009), we find that

flows where multiple wavelengths of the equilibrium are present (i.e. setting

Lx = nλeq where n ≥ 2 is an integer) exhibit pairs of subdominant unstable

(0 < γj < γ1) and stable (γ2 < γj < 0) modes, shown in Fig. 3.2 (b). This

means that simulations with larger boxes but with an equilibrium flow of the

same wavelength are expected to have different dynamics than simulations

with Lx = λeq, as they include additional modes through which LKH can

inject or remove energy. In Sec. 3.4 we will demonstrate that including

DKrook and Drad admits a system where, for sufficiently large Lx, observables

are converged with respect to a further increase in Lx.

As stated above, for each ky in 0 < ky/k
eq
x < 1, we let j = 1 refer

to the dominant unstable mode. We will further let j = 2 refer to the

corresponding stable mode, and j > 2 to all other modes. Figure 3.3 shows

the x-dependence of φ̂1 at ky/k
eq
x = 1/2 alongside the streamfunction for the

equilibrium flow. Consistent with the fluid case (Fraser et al. 2017; Drazin

& Reid 1981), we find γ2 = −γ1 (such that both |γ1,2| are reduced by FLR
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effects), and φ̂2(x, ky) = φ̂∗1(x, ky). Accordingly, we refer to f2 as a conjugate

stable mode.

Consistent with the fluid case discussed in Sec. 3.2.2, the sinusoidal

nature of the equilibrium gives eigenmodes a discrete, comb-like structure

in kx, where f̃j is zero at every kx except for a countably infinite number

of kx that are each separated by keq
x . All of the modes whose eigenvalues

are plotted in Fig. 3.2 (a), including f̃1 and f̃2, have nonzero amplitudes at
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Re(φ̂1)
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Figure 3.3 The equilibrium potential φ0 considered throughout this paper, which
generates an E × B flow along the y-axis that varies sinusoidally in the x direction with
wavenumber keqx , alongside the real and imaginary parts of the potential corresponding

to the unstable eigenmode φ̂1(x, ky) plotted with respect to x at ky/k
eq
x = 1/2. The

stable eigenmode’s potential is the complex conjugate of the unstable eigenmode’s potential,
φ̂2 = φ̂∗1.
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integer multiples of keq
x . Many of the additional modes gained in Fig. 3.2

(b) by extending Lx to 2λeq, such as the modes with finite growth rate and

real frequency, are nonzero at half-integer multiples of keq
x . This implies that

arbitrary linear combinations of the modes in Fig. 3.2 (a) are only nonzero

at integer multiples of keq
x .

3.3.2 Forcing and dissipation effects

The additional physics effects introduced in Sec. 3.2.4 each modify

the eigenmodes to varying degrees. The Krook operator enters the Vlasov

equation only at ky = 0, so it has no impact on the ky > 0 eigenmode spectra.

The radiative damping term reduces the growth rate of every eigenmode by

Drad without changing the mode structure. The hyperdissipation term has

a more significant impact on the spectrum. It reduces the growth rate of

the unstable mode with minor modifications to its structure, and replaces

both the stable mode and marginal continuum with a set of damped modes

that does not include any mode resembling the conjugate stable mode.

We now turn our attention the nonlinear saturation of this system.
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3.4 Instability saturation

3.4.1 Saturation and decaying turbulence

To investigate the saturation of this instability, we include in Eq. (3.7)

the full E ×B nonlinearity, yielding

∂f

∂t
= LKH[f ] +

{
f, φ̄
}
. (3.10)

Owing to the way in which the linear drive terms were derived and im-

plemented, the evolution of Eq. (3.10) with some initial condition finit is

identical to the evolution of Eq. (3.5) with the initial condition f0 + finit,
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Figure 3.4 Left: Nonlinear simulations with dissipation quasilinearly flatten, then
decay. Quasilinear flattening is measured by investigating φ̃ at (kx, ky) = (±keqx , 0). The

perturbation cancels the drive once φ̃(keqx , 0) (blue) reaches a magnitude of 0.5V0/k
eq
x (black

dashed line). Linearly unstable Fourier modes then turbulently decay over time. Right:
Introducing a Krook operator (DKrook/(k

eq
x V0) = 1 here) partially suppresses the Fourier

mode responsible for quasilinear flattening, driving the system and leading to a quasi-
stationary state of driven turbulence.
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presuming no dissipation or drive is included. When dissipation terms are

added to Eq. (3.10), they do not act on f0, unlike those in Eq. (3.5).

As the system evolves according to Eq. (3.10), the nonlinearity transfers

energy across a range of scales, but with zero energy injection and nonzero

dissipation, the initial energy eventually decays away. In terms of saturation

of a linear instability, this can be understood as quasilinear flattening, where

the fluctuations reduce mean gradients until the system is linearly stable.

This is observed in simulations of Eq. (3.10) with added hyperdissipation, as

shown in Figs. 3.4 and 3.5. Once unstable wavenumbers reach a sufficient

amplitude, fluctuations at the wavenumbers of the equilibrium flow, i.e.

(kx, ky) = (±keq
x , 0), quickly grow to offset the unstable profile of the mean

flow. From this point the system exhibits features of decaying turbulence:

the dynamics are highly intermittent, with long periods of coherent behavior

punctuated by the merging of vortices. This is consistent with previous 2D

KH simulations (Faganello & Califano 2017), and can be expected given

the lack of external forcing; the linear drive in Eq. (3.10) appears similar to

an external forcing term, but as argued in the preceding paragraph, that is

merely a consequence of the formal separation between the equilibrium and

fluctuations.
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3.4.2 Driven turbulence

In many physical systems where shear-flow instability saturation and

turbulence are of interest, the unstable shear flow is not some ideal initial

condition but is brought about by a separate process. Examples include

shear flows driven by boundary conditions (Brandstäter et al. 1983), drift-

wave instabilities (Rogers et al. 2000; Rogers & Dorland 2005) in laboratory

experiments, and jets, gravity, or another instability (Goodman & Xu 1994)

in astrophysical systems. We include a Krook operator, introduced in

Sec. 3.2, with the intent of capturing some of the effects of such continual

forcing but without modeling the subtleties of any particular system where

forcing produces a shear flow.

The result of including the Krook operator is readily seen in Figs. 3.4
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Figure 3.5 Contours of the full (equilibrium and fluctuation) electrostatic potential
for a nonlinear simulation with DKrook = 0. From left to right, plots correspond to
t(keqx V0) ≈ 46, 101, and 502. Center and right plots show the tendency for small-scale
fluctuations to dissipate, leaving coherent vortices that merge to progressively larger scales.



88

and 3.6. When the Krook operator is added to Eq. (3.10), it suppresses the

tendency for the (kx, ky) = (±keq
x , 0) component of the fluctuation to cancel

out f0, thereby injecting energy into the system by reinforcing the unstable

equilibrium. This in turn drives other Fourier modes via the KH instability,

as is seen in the time trace of φ̃(keq
x , 0), shown in Fig. 3.4: the (kx, ky) =

(±keq
x , 0) component no longer reaches the amplitude necessary to cancel out

the driving shear flow, and other Fourier modes no longer decay over time,

leading to a quasi-stationary state of driven turbulence where the energy

injected by the Krook drive is balanced by energy dissipation. As DKrook

increases, the saturated amplitude of φ̃(±keq
x , 0) decreases, corresponding to

an overall increase in φ̃0+φ̃(±keq
x , 0). The dominant balance that determines

the amplitude of φ̃(±keq
x , 0) in saturation is between the Krook drive and

the Reynolds stress, which we explore further in Sec. 3.4.3.

Also observed in Fig. 3.5 is the tendency for the system to form

coherent vortices that gradually merge to the largest scale allowed by

the simulation domain. This behavior is also observed in 2D shear layer

simulations (Faganello & Califano 2017), and is consistent with the inverse

energy cascade to large scales in 2D hydrodynamics. The inverse cascade

leads to a system with saturation properties that change as the box size is

increased. The radiative damping term Drad introduced in Sec. 3.2 damps
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low-k fluctuations, preventing energy from continuously building up at the

largest scales, and thereby allowing fluctuation spectra to reach a stationary

condition at low k. For this reason, and for the sake of presenting simulations

where observables are converged with respect to the box size, the majority

of our simulations were run with Lx = 12λeq and Drad = 0.05, a rate that is

roughly 20% of the maximum linear growth rate in the dissipationless case.

Figure 3.6 shows the results of a simulation with these parameters and

DKrook = 1. In contrast with Fig. 3.5, the system exhibits multiple excited

scales in a quasi-stationary saturated state, providing the type of turbulence

desired for studying momentum transport and eigenmode excitation.
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Figure 3.6 Contours of the full (equilibrium and fluctuation) electrostatic potential for
a nonlinear simulation with DKrook/(k

eq
x V0) = 1 and Drad/(k

eq
x V0) = 0.05. From left to

right, plots correspond to t(keqx V0) ≈ 46, 102, and 501. Comparing with Fig. 3.5 shows the
system no longer tends towards large-scale coherent vortices with gradual decay of energy.
Instead, multiple scales are excited and form a quasi-stationary state.
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3.4.3 Momentum transport

We investigate the momentum transport driven by turbulent fluctua-

tions in this system, examining the xy component of the Reynolds stress

tensor, denoted as τ . From the average of the product of the x and y

components of the fluctuating E ×B flow in the homogeneous y direction,

τ ≡
〈
−∂φ
∂x

∂φ

∂y

〉

y

, (3.11)

where 〈A〉q denotes an average of some quantity A over a domain in the

variable q. Due to the sinusoidal variation in x of the equilibrium, τ changes

sign along the x axis as the sign of the equilibrium flow changes, an expected

feature of Kolmogorov flow (Musacchio & Boffetta 2014).

In nonlinear gyrokinetic simulations, numerical convergence is typically

tested by measuring changes of some scalar, time-averaged transport quan-

tity with numerical parameters such as resolution and domain size. Due to

the changes in sign of τ , the average of τ in the x direction and time, 〈τ〉x,t,

is not appropriate for testing numerical convergence because it is typically

0. Instead, we calculate the root-mean-square (RMS) of τ , i.e.,
√
〈τ 2〉x,

and compare the time-average in the quasi-stationary state as resolution

changes. For the simulation shown in Fig. 3.6, the time-averaged τRMS in

saturation changes by at most 2% when any spatial or velocity coordinate’s

domain size or resolution is doubled except Lx (expected due to the sub-
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dominant unstable modes and inverse cascade), where it changes by 9%.

Therefore, despite creating additional unstable and stable eigenmodes as

box size is increased, this simulation is numerically converged in Lx with

regards to τRMS.

Consistent with studies of Kolmogorov flow (where a constant force is

typically used, while our forcing is proportional to f̃(keq
x , 0)) (Musacchio &

Boffetta 2014), we find that as the forcing increases, both the mean flow

velocity and the Reynolds stress increase, such that at saturation the two

are in balance. This is shown in Fig. 3.7, where the force on the mean flow

applied by DKrook is seen to balance the force due to τ . This can also be seen

by considering the effect of a similar Krook operator on Eq. (3.1). When
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Figure 3.7 Comparison between average Krook drive amplitude |〈φ̃(±keqx , 0)〉t|DKrook and
the average amplitude of the corresponding Fourier component of the Reynolds stress τ in
saturation across a range of driving frequencies DKrook. Other simulation parameters are
the same as in Fig. 3.6. In the saturated state, the mean flow is governed by a competition
between the external forcing and the turbulent Reynolds stress. A small contribution
is made by the influence of dissipation on φ̃(±keqx , 0), evidenced by the minor mismatch
between the two curves at the lowest values of DKrook.
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Eq. (3.1) is Fourier transformed in both x and y, our forcing term appears

as DKrookδkx,±keqx δky,0(k
2
x + k2

y)φ̃. The (kx, ky) = (keq
x , 0) component of the

equation then becomes

∂

∂t
φ̃(keq

x , 0) +
∑

k′

k′y
keq
x

[
(keq
x − k′x)2 + k′2y

]
φ̃(k′x, k

′
y)φ̃(keq

x − k′x,−k′y)

= −DKrookφ̃(keq
x , 0), (3.12)

where the nonlinear term is the kx = keq
x component of the Fourier-

transformed Reynolds stress τ̃ . For a quasi-stationary, saturated state, the

time-average of Eq. (3.12) yields a balance between the Reynolds stress

and the DKrook term. Figure 3.7 compares these terms for a range of

simulations with different values of DKrook, demonstrating good agreement

with expectations. A small mismatch occurs because the effect of dissipation

on the flow makes a small contribution to the force balance, but the other

forces are clearly dominant. Because we only include dissipation on the

fluctuation, not the equilibrium φ0 which is independent of DKrook, this

contribution decreases as DKrook increases.
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3.5 Eigenmode analysis

3.5.1 Eigenmode Expansion

We investigate the role of stable modes in this system by expanding the

turbulent state in a basis of the eigenmodes of the dissipationless operator

LKH. We expand in eigenmodes of the dissipationless operator to focus

on the role played by f2, which, although it vanishes from the eigenmode

spectrum in the dissipative system, may still characterize a component of

the nonlinear state. This also allows for comparison with previous work

(Fraser et al. 2017), where the dissipationless modes were considered.

As discussed in Sec. 3.3, the operator LKH has a distinct set of Nev

eigenmodes {f̂j} for each value of ky. Therefore, an expansion of an arbitrary

state f(s, x, y, v‖, µ) in a basis of eigenmodes f̂j may be written as

f(s, x, y, v‖, µ) =
∑

ky

Nev∑

j=1

βj(ky)f̂j(s, x, ky, v‖, µ)eikyy. (3.13)

As in Sec. 3.3, the index j is a positive integer that enumerates the

eigenmodes at a given ky, and for 0 < ky/k
eq
x < 1, j = 1 and j = 2 label the

most unstable mode and its stable conjugate, respectively. The number of

eigenmodes Nev obtained by the eigenmode solver is equal to the number of

degrees of freedom in the discrete numerical representation, i.e., the product

of the number of grid points and the number of species, and the modes were
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verified to be linearly independent, so expansions of this form exist and are

unique assuming the numerical resolutions of both sides of Eq. (3.13) are

identical. Figure 3.8 shows time traces of |β1| in blue and |β2| in orange, as

well as the time-averaged |βj| in saturation for every j at ky/k
eq
x = 0.25 for

the same simulation shown in Fig. 3.6.

The values βj, which we refer to as the amplitudes of each eigenmode,
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Figure 3.8 Left: Amplitudes of the unstable and stable eigenmodes, |β1| (blue) and
|β2| (orange), respectively, as functions of time on a logarithmic scale (top, horizontal axis
reduced to highlight the parametric growth of |β2|) and a linear scale (bottom) at horizontal
wavenumber ky/k

eq
x = 0.25 for the simulation with DKrook = 1, Drad = 0.05, and D⊥ = 1.6.

Right: Full spectrum of eigenvalues ωj (real part ωr on y-axis, growth rate γ on x-axis),
with color indicating time-averaged (starting from t = 300) amplitudes 〈|βj|〉, and dot size
scaled proportionally to allow multiple |βj| with the same ωj to be shown. The decay of β2
is followed by nonlinear growth much faster than β1, while β1 continues its linear growth,
consistent with Fraser et al. (2017). The remarkable similarity of the values of |β1| and
|β2| in the saturated state was predicted in Fraser et al. (2017). Results are qualitatively
similar for other unstable ky.
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can be understood as coordinates or components of f in the basis {fj}.

When such an expansion is performed at multiple time steps of a given

simulation so that f is a function of time, each βj becomes a function of

time that indicates the relative contribution of eigenmode fj to the state

of the system over time. In linear simulations, βj(ky, t) = βj(ky, 0)eiωjt for

each j and ky. Previous work showed how β1 and β2 interact nonlinearly in

a fluid system, derived equations for ∂βj/∂t by inserting expansions of the

form Eq. (3.13) into the governing equations of the system, and compared

the relative sizes of different terms leading into instability saturation (Terry

et al. 2006; Makwana et al. 2011; Fraser et al. 2017). Here we directly

calculate the evolution of each βj over time in nonlinear simulations,

extending analysis beyond the onset of saturation. Our procedure for

calculating each βj relies on the left eigenmodes of LKH and is described

in Terry et al. (2014); Hatch et al. (2011).

Similar analyses have been performed for gyroradius-scale instabilities

in reduced fluid models (Makwana et al. 2011), and gyrokinetic models

(Hatch et al. 2011; Pueschel et al. 2016). These eigenmode expansions are

related to the “projections” calculated in related work (Whelan et al. 2018;
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Pueschel et al. 2016; Faber et al. 2018), defined as

pj =

∣∣∣∣∣

∫
dxdv

∑

s

f ∗j fNL

∣∣∣∣∣

(∫
dxdv

∑

s

|fj|2
∫
dxdv

∑

s

|fNL|2
)−1/2

(3.14)

(where fNL is the nonlinearly-evolved distribution function, and the sum-

mations are over each species), but the two are generally quite different.

Identifying 〈g, h〉 ≡
∫
dxdvg∗h as an inner product on the space of dis-

tribution functions f , projections pj are inner products normalized by the

lengths of fj and f so that pj = 0 if they are orthogonal (under this inner

product) and pj = 1 if they are parallel. The eigenvectors of an arbitrary

linear operator are not guaranteed to be mutually orthogonal under a given

inner product (we have verified that the eigenmodes of our system are not

mutually orthogonal under the above inner product), which leads to the pos-

sibility that the projection onto one eigenvector depends on the amplitudes

of every eigenvector. For example, one could find that the projection pj onto

a stable mode counterintuitively grows over time in a linear simulation due

to nonorthogonality, even though the amplitude βj of the stable mode de-

cays. Likewise, if the projection onto a stable mode is large in the saturated

state, it is not immediately clear whether this is due to a large stable mode

amplitude, significant nonorthogonality with the dominant unstable mode,

or even due to nonorthogonality with an entirely different mode that has a

large amplitude. This situation is avoided if the linear operator has mutually
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orthogonal eigenvectors (e.g. if it is Hermitian), if the set of modes fj are

replaced by an orthogonal set, such as from a proper orthogonal decomposi-

tion (Hatch et al. 2011), or by applying an orthogonalization procedure like

Gram-Schmidt (Pueschel et al. 2016). However, the relationship between

the eigenmode amplitudes and the orthogonalized mode amplitudes is not

immediately clear. We focus our attention on the eigenmode amplitudes

βj rather than projections p because linear energy transfer due to LKH is

directly related to βj, not p (Terry et al. 2006), and to facilitate comparison

with Fraser et al. (2017).

For the simulation shown in Fig. 3.6, we use the parameters Lx =

12λeq, DKrook = 1, Drad = 0.05, and D⊥ = 1.6, with 512 grid points in the x

direction. Calculating every eigenmode of the system at that resolution is

prohibitively expensive. Instead, to generate Fig. 3.8 we perform eigenvalue

computations with Lx = λeq. Due to the discrete, comb-like eigenmode

structure in kx discussed in Secs. 3.2.2 and 3.3.2, this reduced set of modes

does not describe the full state of Eq. (3.13) because it lacks modes obtained

when Lx > λeq [see Fig. 3.2]. But this does allow for a full expansion of the

components of f̃(kx, ky) given by kx = nkeq
x for integer n, and this does not

affect the obtained values of β1 and β2.

Consistent with analytical calculations and reduced models (Terry et al.
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2006; Makwana et al. 2011; Fraser et al. 2017), Fig. 3.8 shows that |β2|

decays before being nonlinearly driven at a rate faster than the unstable

mode’s concurrent exponential growth. We stress that the evolution of

|β2| is remarkably consistent with the inviscid fluid problem (Fraser et al.

2017) despite the influence of nonzero D⊥ in the nonlinear simulation, which

modifies the structure of f1 and eliminates the conjugate stable mode f2 from

the eigenmode spectrum of the dissipative operator. A similar observation

was made in studies of ITG pseudospectra, where a similar conjugate stable

mode vanished in the dissipative case, but was nonetheless a part of the

pseudospectrum and was significantly excited in saturation when dissipation

was included (Hatch et al. 2016). Figure 3.8 only shows amplitudes for the

ky/k
eq
x = 0.25 eigenmodes, but every other ky in 0 < ky/k

eq
x < 1 exhibits

similar results. The amplitude of f2 in saturation nearly matches that of f1

both at saturation onset and for the rest of the simulation. Since the two

modes are nearly conjugate symmetric, this suggests that the linear energy

dissipation due to f2 is a significant fraction of the linear energy injection due

to f1 at the onset of saturation and throughout the quasi-stationary state.

This suggests that the predictive capabilities of the threshold parameter Pt

analysis studied in Terry et al. (2006); Makwana et al. (2011) carry over to

systems more general than plasma microturbulence, and that a significant
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amount of the energy transferred to ky > 0 fluctuations via LKH makes its

way back into the mean flow rather than smaller scales.

3.5.2 Truncated eigenmode expansions

In turbulence models, it is common practice to separate the flow into

mean and fluctuating parts. If there is further separation between large

and small scale structures, the former are often approximated by the most

unstable eigenmode (Gaster et al. 1985; Liou & Morris 1992; Nikitopoulos

& Liu 2001). Here we demonstrate the potential for improving such models

by including the stable mode in the approximation for the large scales.

Figure 3.9 compares part of the flow structure at t ≈ 501(V0k
eq
x )−1

to three different expansions. The top-left contours show the electrostatic

potential φ for the simulation described in Fig. 3.8. To focus on the

components of φ where the eigenmodes discussed in Figs. 3.1 and 3.2 can

be used to approximate the flow, a filtering procedure has been applied in

Fig. 3.9 to remove all but a subset of Fourier components (kx, ky). Only ky in

0 < ky/k
eq
x < 1 are included, and only kx = nkeq

x for integer n are included.

This allows the eigenmodes in Fig. 3.8, and the equivalent eigenmodes at

other unstable ky, to be used as a basis in the sense of Eq. (3.13). The

top-right contours show the φ structure obtained from summing over these

eigenmodes at each unstable ky, verifying that they indeed serve as a basis.
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The excellent agreement helps demonstrate that the wavenumber filtering

only affects the amplitudes βj of eigenmodes that arise from having Lx > λeq,

and fully captures the structure and amplitudes of the Lx = λeq eigenmodes.

Extremely minor differences between the top-left and top-right contours

arise due to the higher x resolution in the nonlinear simulation than in
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Figure 3.9 Comparison between the components of φ that are spanned by the eigenmodes
in Fig. 3.8 (top left), a summation over all of the eigenmodes in Fig. 3.8 at every unstable ky
(top right), summation over just the most unstable mode at every unstable ky (bottom left),
and summation over the most unstable and conjugate stable mode at every unstable ky
(bottom right) at t ≈ 501(V0k

eq
x )−1 for the same simulation as Fig. 3.6. Due to only integer

multiples of keqx contributing to these eigenmodes, they are unable to effectively reproduce
the full flow profile, plotted in Fig. 3.6. However, those components of φ that can be
expressed as a linear combination of the eigenmodes in Fig. 3.8 are very well-described
even by just the unstable φ1 and stable φ2.
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the linear eigenmode calculations. To investigate the differences between

these large-scale flows and the results of approximating them using just the

unstable mode, the bottom-left contours show the result of excluding every

eigenmode in Eq. (3.13) except the most unstable at each ky, as is often done

in reduced models. The bottom-right contours are obtained similarly, but

both the most unstable mode φ1 and the conjugate stable mode φ2 at each

ky are included. Including φ2 produces a flow structure that is remarkably

similar to the top-left and top-right flow structures, unlike what one obtains

when only φ1 is included. Unsurprisingly, the more accurate flow structure

leads to a more accurate Reynolds stress (not shown).

To compare the efficacy of these three eigenmode expansions over time,

0 200 400 600

t

0.0

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
er
ro
r

β1φ1

β1φ1 + β2φ2∑
all βjφj

Figure 3.10 Error in φ of each of the eigenmode expansions of Fig. 3.9 relative to the
filtered nonlinear data. Including φ2 significantly improves fluctuation estimates in the
quasi-stationary state.
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rather than the one timestep shown in Fig. 3.9, we calculate the error, given

by ||φ −∑j βjφj||/||φ||, of each relative to the filtered nonlinear data (the

top-left plot in Fig. 3.9). Here φ refers to the filtered nonlinear φ, and

||.|| is the standard L2 norm. Due to differences in x resolution, the full

expansion (in green) has minor errors that decay away as the simulation

progresses. Errors in both the unstable-only expansion (blue) and the

combined unstable-stable expansion (orange) start large due to choice of

initial condition, gradually decay as the most unstable mode grows in the

linear phase, and peak at the onset of saturation before fluctuating about an

average value in the quasi-stationary state, with the inclusion of the stable

mode reducing the average error in the saturated state by a factor of three.

3.5.3 Influence of forcing and dissipation

Figure 3.8 shows significant excitation of the stable mode in the

saturated state for a simulation with DKrook = 1, Drad = 0.05, and D⊥ = 1.6,

with Figs. 3.9 and 3.10 demonstrating its importance in describing the

large-scale fluctuations in φ. To investigate the role of these parameters

in determining the influence of stable modes in saturation, we vary them

between different simulations. In particular, we pay close attention to the

relative amplitudes of β1 and β2 as Drad and DKrook are varied. Because Drad

is a symmetry-breaking term in the sense that it decreases the growth rate of
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f1 and increases the damping of f2 without changing their mode structures,

it reduces the parametric driving of f2 by f1. (The parametric driving of f2

by f1 depends on their mode structures, the form of the nonlinearity, and

γ2/γ1 (Terry et al. 2006, 2009; Makwana et al. 2011; Fraser et al. 2017). Of

those, only γ2/γ1 is affected by Drad, making its influence on |β1/β2| more

transparent.) Figure 3.11 shows that this leads to significantly smaller |β2|

relative to |β1| in the saturated state. This also suggests that for unstable

shear flow in systems without radiative damping |β2| ≈ |β1| is expected,

consistent with Fraser et al. (2017). The ky dependence of the ratio |β1/β2|

roughly follows that of γ1, except that it approaches 1, rather than 0, at
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Figure 3.11 Time-averaged ratio of unstable mode amplitude to stable mode amplitude
in saturation at each ky for a range of Drad with DKrook = 1. The growth rate dependence
of the Pt analysis (Terry et al. 2006, 2009; Makwana et al. 2011) suggests that higher Drad

causes β2 to be driven less leading into saturation. Here we see that this is reflected in
the eigenmode amplitudes in the saturated state. The ky dependence of the ratio |β1/β2|
roughly follows that of γ1.
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ky = 0 and ky = keq
x .

Figure 3.12 shows how the time-averaged large-scale values of |β2/β2|

in saturation vary with DKrook. The shape of the curves remains fairly

consistent as DKrook changes. Two regimes are apparent: below DKrook = 4,

increasing DKrook drives the ratio |β1/β2| closer to unity, while above

DKrook = 4 the ratio is significantly less affected. This behavior is consistent

with the notion that reinforcement of the unstable profile by larger DKrook

allows β2 to be nonlinearly pumped to its maximal level, whereas for smaller

DKrook the quasilinear depletion of the profile cuts off the pumping of β2

before it reaches its maximal level. Note that f2 tends to reduce the

Reynolds stress τ , suggesting that the increase in τ with DKrook must be due
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Figure 3.12 Time-averaged ratio of unstable to stable mode amplitude in saturation at
each ky for a range of DKrook. Between DKrook = 0.5 and 4, increasing DKrook generally
pushes the ratio of amplitudes closer to unity. Above DKrook = 4, increasing DKrook has
a less pronounced impact on the ratio. We stress that, in both regimes, the mean flow
amplitude and Reynolds stress increase with DKrook.
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to an increase in overall fluctuation level, rather than a change in |β1/β2|.

3.5.4 Influence of stable modes in analytical models

To better understand how the unstable and stable modes affect the

mean flow in saturation, we develop a reduced model that expresses the

mean flow amplitude in terms of β1 and β2. The model considers a 2D

inviscid, incompressible fluid, assumes φ ≈ β1φ1 + β2φ2 for 0 < ky/k
eq
x < 1,

and assumes that the force applied by the Krook operator balances the

turbulent Reynolds stress in saturation. These assumptions are consistent

with the findings presented in Figs. 3.7 and 3.9.

For perturbations about a sinusoidal equilibrium flow, the linearized

system becomes Eq. (3.4), which was derived in Sec. 3.2 but is repeated

here:

ωj(k
2
x + k2

y)φ̃j +
kyV0

2

[
(k2
x − 2kxk

eq
x + k2

y)φ̃
−
j + (k2

x + 2kxk
eq
x + k2

y)φ̃
+
j

]
= 0.

Equation (3.4) can be expressed as a matrix equation ωj~φj+M~φj = 0 where

the components of ~φj are φ̃j at different kx and the dimension of φ̃j and M

is infinite. Reasonable approximations of the eigenmodes and eigenvalues

can be obtained by solving the matrix equation with φ̃j 6= 0 for some finite

number of kx values, and φ̃j = 0 for all other kx. This has previously been

found useful in similar KH and tearing mode calculations (Pessah 2010).
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For example, solving the system with kx = 0,±keq
x yields

ω1 = −ikyV0

κ
~φ1 = (1,−iκ, 1)T

ω2 =
ikyV0

κ
~φ2 = (1, iκ, 1)T

ω3 = 0 ~φ3 = (−1, 0, 1)T ,

where the vectors are written in the form (φ̃(−keq
x ), φ̃(0), φ̃(keq

x ))T and

κ(ky) ≡
√

2((keq
x )2 + k2

y)/((k
eq
x )2 − k2

y).

To arrive at an expression of force balance between the Reynolds stress

and Krook drive, we return to Eq. (3.12), which we repeat here:

∂

∂t
φ̃(keq

x , 0) +
∑

k′

k′y
keq
x

((keq
x − k′x)2 + k′2y )φ̃(k′x, k

′
y)φ̃(keq

x − k′x,−k′y)

= −DKrookφ̃(keq
x , 0).

Considering a steady state where ∂φ̃(keq
x , 0)/∂t = 0, and assuming φ̃ =

β1φ̃1 +β2φ̃2 with just the kx = 0,±keq
x Fourier modes considered, Eq. (3.12)

can be manipulated to yield

φ̃(keq
x , 0) =

2ikeq
x

DKrook

∑

k′y>0

k′yκ(k′y)
(
|β1|2 − |β2|2

)
. (3.15)

From here, values for |β1| and |β2| can be inserted to arrive at values

for the mean flow amplitude. In other systems, |βj| have been calculated

using statistical closures (Baver et al. 2002; Terry & Gatto 2006; Hegna

et al. 2018). Extending the above approach with such a calculation would
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yield a complete model, but is outside the scope of this paper. Instead, we

insert values of |β1| and |β2| from nonlinear simulations into Eq. (3.15). Our

interest is in the scaling of φ̃(keq
x , 0) with DKrook, and what role β2 plays

in that scaling. Thus, we perform simulations with a range of DKrook and

compare three quantities: the time-averaged value of φ̃(keq
x , 0) in saturation,

the result of Eq. (3.15) using both β1 and β2, and the result obtained when

β2 = 0 is assumed. In Fig. 3.13, this comparison is made for three values of

Drad, corresponding to three systems with varying degrees of stable mode

excitation (recall stable modes are more excited at lower values of Drad, see
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Figure 3.13 A comparison between the true value of |φ(keqx , 0)| (blue dots) and values
predicted by Eq. (3.15) with (orange diamonds) and without (green crosses) the stable
mode contribution β2 included over multiple values of DKrook and Drad. In each frame, the
models are scaled by a constant coefficient to match the true value at DKrook = 4 so that
the scaling with DKrook can be investigated, rather than the absolute agreement. For the
base case Drad = 0.05 (center frame), the scaling of |φ(keqx , 0)| with DKrook is qualitatively
captured by the model with β2 neglected, however the scaling is significantly improved when
stable modes are included. For the larger value of Drad (right frame), where stable modes
are largely suppressed in saturation (c.f. Fig. 3.11), including β2 in the model produces
little change, and decent quantitative agreement is observed by the model both with and
without β2 included. For the smaller value of Drad (left frame), where stable modes are
more important, the model fails to even qualitatively agree with simulations unless β2 is
included, in which case the overall trend is captured.
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Fig. 3.11). For Drad = 0.05, where stable modes were shown in Fig. 3.8 to

be significant, the β2 = 0 model captures general trends, but is significantly

improved when β2 is properly included. For Drad = 0.025, where stable

modes are even more important, the β2 = 0 model fails to even capture the

decrease in |φ̃(keq
x , 0)| with DKrook, while the model that includes β2 does

capture the correct qualitative and often even quantitative behavior. At

Drad = 0.1, where stable modes are significantly weakened, their inclusion

does not have a significant impact on the model. For each value of Drad, the

two models are scaled by a constant so that they agree with the simulation

results at DKrook = 4, which is where the change in scaling with respect to

DKrook was noted in Fig. 3.12. (It is the scaling properties of the models that

we are assessing, not the absolute values.) Note that this model neglects

all eigenmodes except φ1 and φ2, including the modes with nonzero kx at

noninteger multiples of keq
x .

Comparing the two models at different values of Drad demonstrates that

when stable modes are excited in this system as in Fig. 3.8, they not only

modify the shape of the flow, as shown in Fig. 3.9, but have an important

impact on how the system responds to forcing. By nonlinearly transferring

energy into large-scale stable modes, the fluctuating flow adjusts in a way

that changes the feedback onto the large-scale mean flow, thus affecting how
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the system is forced. We also note that Eq. (3.15) was derived assuming an

inviscid fluid, while the inserted values for |β1| and |β2| were obtained from

gyrokinetic simulations with finite D⊥, suggesting gyrokinetic effects may

not play a significant role in the eigenmode excitations and force balance in

this system.

3.6 Conclusions

We have studied an unstable gyrokinetic shear flow, finding that a

conjugate stable eigenmode is nonlinearly driven to a large amplitude

leading into saturation, and continues to make important contributions

to the Reynolds stress in the quasi-stationary turbulent state, except at

high values of radiative damping. This demonstrates that previous findings

on the role of stable eigenmodes in shear-flow instability saturation of a

fluid shear layer are consistent with the quasi-stationary turbulent state

of a gyrokinetic periodic shear flow. Furthermore, our results point to

the potential for significantly improving reduced models of shear-driven

turbulence by including stable-mode physics.

We have investigated the saturation of a linearly unstable E×B shear

flow in gyrokinetics as it relates to the full eigenmode spectrum. We find that

the gyrokinetic system compares well with its hydrodynamic counterpart

with regards to the unstable mode, as well as the rest of the spectrum.
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Specifically, the dissipationless linear operator includes a single conjugate

stable eigenmode for every unstable eigenmode, along with a continuum of

marginally stable modes. Nonlinear simulations characterize the behavior

of the flow in saturation, and we examine cases both with and without an

external driving term. The drive is implemented in the form of a Krook

operator, and reinforces the unstable mean flow in a manner similar to

Kolmogorov flow.

In simulations without the drive term, the system lacks any energy

injection to maintain the unstable equilibrium. This causes fluctuations to

quickly relax the unstable flow shear once nonlinear interactions become sig-

nificant, and the turbulence subsequently decays. In simulations with forc-

ing, we include a scale-independent radiative damping term that prevents

accumulation of energy at the largest scales, and allows a quasi-stationary

state of driven turbulence. In driven simulations, a partial relaxation of the

mean flow is still observed, with the final state mostly determined by a force

balance between the Krook drive and the turbulent Reynolds stress.

With a well-resolved system of quasi-stationary, driven turbulence,

we investigate the role of different linear eigenmodes by performing an

eigenvalue decomposition, where the turbulent state is expressed as a linear

combination of the eigenmodes of the dissipationless linear operator. The
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evolution of the dominant pair of stable and unstable modes leading into

saturation compares well with previous analytic calculations of an inviscid

fluid shear layer (Fraser et al. 2017), and the ensuing excitation of the stable

mode in the turbulent state is consistent with previous findings in plasma

microturbulence (Makwana et al. 2011). By demonstrating that the role of

stable modes in shear-flow instability saturation is consistent with their role

in the fully-developed turbulent system, we have extended the set of systems

in which instability saturation analyses has proven to be predictive of the

turbulent state to include fully global fluid instabilities, further motivating

these sorts of analyses in other global instabilities where stable modes exist,

such as the magnetorotational instability (Clark 2017).

The significant excitation of linearly stable modes in the saturated

state indicates that an important aspect of shear-driven turbulence is this

previously-neglected tendency for large-scale fluctuations to lose energy back

into the mean flow via the linear operator. This idea is in contrast with

the standard picture of instability-driven turbulence, where it is assumed

that the largest scales are dominated by a balance between linear energy

injection and nonlinearly energy transfer to smaller scales. While many

other modes are also excited in the saturated state, we have shown that

the stable/unstable pair of modes is sufficient to capture many aspects
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of the flow. This also presents a significant modification to the existing

understanding of shear-driven turbulence, where reduced models generally

assume that large-scale fluctuations are dominated by unstable modes alone

(Gaster et al. 1985; Liou & Morris 1992; Nikitopoulos & Liu 2001; Horton

et al. 1987).

Consistent with previous work where the conjugate symmetry between

unstable/stable pairs of modes was broken with dissipative terms (Terry

et al. 2009), we find that the added radiative damping term, which increases

the damping rate of the stable mode and reduces the growth rate of the

unstable mode, suppresses the importance of the stable mode relative to

the unstable one. This is observed by comparing the amplitudes of the

two modes for a range of radiative damping values. Making use of the

observations that the gyrokinetic and fluid systems behave similarly, that the

mean flow amplitude at saturation is determined by force balance between

driving and Reynolds stress, and that the stable and unstable modes alone

describe large-scale fluctuations well despite the conjugate stable mode

vanishing from the eigenmode spectrum when dissipation is included, we

construct a reduced model that allows us to examine the role of stable

modes in determining the mean flow in saturation. The model results in an

equation where the contributions from stable modes can be isolated from
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unstable modes. We find that lower values of radiative damping, where

stable modes exhibit higher amplitudes, require the inclusion of stable modes

in the model in order for it to be even qualitatively correct. At higher

radiative damping, where stable modes are suppressed, their inclusion in

the model has no significant impact on its performance. Thus, in shear-flow

systems where stable modes play an important role in instability saturation,

they may also be expected to play an important role in understanding

how fluctuations affect the mean flow, and thus how the system responds

to external forcing. We further conclude that when effects observed to

change turbulence characteristics also break the conjugate symmetry of

an unstable/stable eigenmode pair (Palotti et al. 2008), the change in

turbulence may be related to differences in stable mode excitation.
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Chapter 4

Suppression of stable mode effects by

magnetic fields in free shear layers in MHD

This chapter is under preparation for

eventual submission to Physics of Plasmas



119

Abstract
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An unstable shear layer with an initially-uniform, flow-aligned magnetic

field is studied in the regime of 2D incompressible magnetohydrodynamics

with finite resistivity and viscosity using direct numerical simulations.

The layer evolves freely without external forcing, broadening in time as

turbulent stresses transport momentum across it. As with the system

studied in Chapter 3, here a conjugate stable mode exists for every unstable

mode in the absence of dissipation. Stable modes are shown to transport

momentum up its gradient and shrink the layer when dominant. When

the magnetic field is weak, the linear instability is minimally affected by

it, but enhanced small-scale fluctuations relative to the hydrodynamic case

are observed. These fluctuations coincide with increased dissipation and

faster layer broadening, and are more pronounced with stronger fields. Here,

these effects are understood as consequences of a reduction in stable mode

excitation with stronger fields. As field strength increases, stable modes

become less excited and transport less momentum against its gradient.

Additionally, the energy these modes would otherwise transfer to the driving

shear instead cascades to small scales where it is lost to dissipation. Reduced

models akin to Chapter 3 are explored. While the Reynolds stress is well-

described using just two modes per wavenumber, the Maxwell stress is not.
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4.1 Introduction

Chapters 2 and 3 established that – in basic systems of shear flow insta-

bility – large-scale, dissipationless stable modes are nonlinearly coupled to

unstable modes. While unstable modes tend to transport momentum down

its gradient, stable modes tend to transport momentum against its gradient.

Coupling to stable modes was shown to play a significant role in instability

saturation relative to other energy transfer channels. Due to this coupling,

stable modes reach significant amplitudes relative to unstable modes in the

ensuing turbulence, except when an added dissipation that preferentially

affects large scales is strong. When stable modes reach such large ampli-

tudes, large-scale flow fluctuations are well-approximated by a combination

of stable and unstable modes alone (one pair per horizontal wavenumber),

and accounting for stable modes significantly improves reduced models of

momentum transport.

In this chapter, stable modes are investigated for an unstable shear

layer that is more complex than the shear flows in previous chapters in

two key regards. First, the fluid is electrically conducting (e.g. a plasma)

and modeled in the framework of magnetohydrodynamics (MHD), with an

initially uniform magnetic field along the direction of flow in the equilibrium.
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Second, the base flow is not held fixed as in Chapter 2, nor reinforced as in

Chapter 3; thus, the flow gradient gradually flattens as turbulent stresses

broaden the layer. This introduces a third instability saturation mechanism

in addition to the two considered in Chapter 2, and complicates the methods

that were employed in Chapter 3 to analyze the effects of stable modes.

Previous studies of this system (e.g. Palotti et al. 2008; Mak et al. 2017)

have shown that the addition of an equilibrium magnetic field enhances the

turbulent momentum transport and broadening rate of the layer. Because

the magnetic field is known to reduce the growth rate of the driving

instability (Chandrasekhar 1961; Palotti et al. 2008), reduced transport

models primarily informed by the growth rate of the instability are unlikely

to capture this scaling. Here, the effect of this field on stable mode excitation

is investigated to identify whether the enhanced transport is attributable to

a suppression of stable modes and the counter-gradient transport that they

provide. If so, the effect of the magnetic field might be compared to the

added damping in Chapter 3.

The system is studied by analyzing 2D, incompressible MHD simula-

tions with finite resistivity and viscosity computed with the Dedalus code

(Burns et al. 2020), previously used to study a similar hydrodynamic system

(Lecoanet et al. 2016). Some hydrodynamic simulations are also performed
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for comparison. In the MHD case, the field strength and resistivity are var-

ied to explore different regimes of magnetic activity, focusing more on the

weak-field regime than the strong-field regime for its closer correspondence

to the familiar hydrodynamic case. The initially-uniform field is wound

up by large-scale vortices formed by the instability in a manner consistent

with Mak et al. (2017). With this winding of the field, small-scale magnetic

fluctuations are observed along with potential reconnection events. The

Maxwell stress associated with these fluctuations enhances transport and

layer broadening by an amount that increases with field strength (within

the weak-field regime explored here). Additionally, the magnetic fluctua-

tions greatly enhance the overall energy dissipation rate due to resistive

dissipation, which exceeds viscous dissipation for all but the weakest mag-

netic fields considered. These fluctuations are also accompanied by some

enhanced small-scale flow fluctuations that increase viscous dissipation rel-

ative to the hydrodynamic case unless the field is sufficiently weak, with the

threshold determined by both initial field strength and resistivity.

Previously observed phases where the layer’s width briefly shrinks (Ho

& Huerre 1984) due to counter-gradient momentum transport are observed

in simulations with a weak or no magnetic field, but not with a sufficiently

strong magnetic field. Consistent with hydrodynamic experiments reviewed
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by Ho & Huerre (1984), this counter-gradient transport is driven by re-

versals of the Reynolds stress induced by large-scale flow fluctuations. The

reduction in counter-gradient transport with stronger fields is shown to have

two causes. First, the Maxwell stress due to small-scale field fluctuations

becomes stronger. The Maxwell stress always transports momentum down

the gradient and thus opposes any Reynolds-stress-induced counter-gradient

transport. Second, the Reynolds stress is reduced at stronger fields, with

a greater reduction during counter-gradient transport phases than at other

times.

Reversals in the Reynolds stress have previously been shown to be an

indication of stable mode activity in hydrodynamic systems (Fraser et al.

2017). This is shown to be the case in this system as well. This allows

the Reynolds stress to serve as a convenient proxy for relative amplitudes

between stable and unstable modes, so that trends in stable mode activity as

field strength varies can be identified with simple Reynolds stress analyses.

Using this proxy, the enhanced generation of small-scale fluctuations and

corresponding dissipation as field strength increases is attributed to a partial

suppression of stable modes. This connection between more energy transfer

to small scales and reduced stable mode activity is consistent with other

systems, where stable modes are known to remove energy from large-
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scale fluctuations that would otherwise cascade to small scales (Makwana

et al. 2014). Thus, reduction in counter-gradient momentum transport by

Reynolds stresses is shown to be directly caused by less stable mode activity

with stronger fields, which indirectly enhances small-scale fluctuations,

dissipation, and down-gradient momentum transport via Maxwell stresses.

After applying this proxy and investigating these consequences of

reduced stable mode activity, detailed analyses are presented to validate

the proxy and identify its shortcomings. In detailing the connection between

Reynolds stress and stable modes, their use in possible reduced models of

momentum transport are investigated. Following the methods of Chapter

3, stable and unstable modes alone are shown to describe the Reynolds

stress well in the regimes considered here. The Maxwell stress, however, is

not well described, both because the large-scale field fluctuations bear little

resemblance to the fields of the stable and unstable modes, and because the

dominant contributions are from scales much smaller than the scales where

these modes lie.

Finally, efforts to more directly identify the increased magnetic field

strength as the root cause for the reduction in stable mode activity are

presented. Semi-analytic calculations are performed of the tendency for

stable and unstable modes to nonlinearly interact leading into saturation at
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different magnetic field strengths. This tendency is assessed by calculating

the threshold parameter Pt (Terry et al. 2006; Makwana et al. 2011; Fraser

et al. 2017), which evaluates the role in instability saturation played by

nonlinear coupling between stable and unstable modes relative to nonlinear

coupling between unstable modes alone. For the same regimes of magnetic

field strength as the nonlinear simulations, a preliminary analysis suggests

that coupling to stable modes plays less of a role in instability saturation

as field strength increases. This work represents the first time Pt has been

calculated in a system where the exact structure of the eigenmodes cannot

be calculated in closed form. These calculations were performed by Jack

Schroeder (Fraser et al. 2020) in what began as an undergraduate research

project under my supervision, and many figures relevant to this project are

provided courtesy of him.

This chapter is organized as follows. The system is described in Sec. 4.2,

with the equilibrium and governing equations given in Sec. 4.2.1, the lin-

earized equations in Sec. 4.2.2, and the numerical implementation described

in Sec. 4.2.3. Results are then shown, starting with an overview of the

linear modes in Sec. 4.3 and of the hydrodynamic system in Sec. 4.4. A de-

tailed comparison between the hydrodynamic system and MHD simulations

with different field strengths and resistivities is presented in Sec. 4.5, where
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counter-gradient momentum transport is used as a proxy for stable mode

activity. This proxy is validated in Sec. 4.5.4 by directly calculating the

excitation of stable and unstable modes in the nonlinear simulations, and

in Sec. 4.5.5 by comparing truncated eigenmode expansions using the same

methods as Fraser et al. (2018). Additional details regarding these eigen-

mode expansions, including how they are calculated in generic systems of the

same form as the one studied here, and why the expansions are well-defined

and unique in this system, are given in Appendix A, with details specific

this system and the use of Dedalus given in Appendix B. The threshold

parameter, and an explanation for how it can generally be calculated even

in systems where eigenmode structures cannot be calculated analytically, is

presented in Appendix C. Conclusions are presented in Sec. 4.6.

4.2 System setup

4.2.1 Equilibrium, governing equations

We study the evolution of a two-dimensional free shear layer in an

incompressible fluid in MHD with finite viscosity and resistivity, with an

initially-uniform magnetic field in the direction of the flow. Specifically,

we consider an initial flow in the horizontal direction x̂ that varies in the
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vertical direction ẑ, i.e., V̄0 = Ū(z̄)x̂,1 where Ū(z̄) = Ū0 tanh(z̄/d̄) is the

initial flow profile, Ū0 is the flow speed away from the layer, and d̄ is the

layer half-width, with an initial, uniform magnetic field B̄0 = B̄0x̂. Here,

an overbar denotes a dimensional quantity. Henceforth, we normalize all

speeds, distances, and fields according to U = Ū/Ū0, (x, z) = (x̄/d̄, z̄/d̄),

and B = B̄/B̄0, such that V0 = tanh(z)x̂ and B0 = x̂. For the remainder

of the chapter, all quantities will be nondimensionalized in terms of Ū0, d̄,

B̄0, and combinations thereof.

We describe the flow velocity and magnetic field in terms of a stream

function φ and flux function ψ, so that v = ŷ × ∇φ and B = ŷ × ∇ψ.

Under our chosen normalizations, we may write the governing equations as

(Biskamp 2003)

∂

∂t
∇2φ+

{
∇2φ, φ

}
=

1

M 2
A

{
∇2ψ, ψ

}
+

1

Re
∇4φ, (4.1)

and

∂

∂t
ψ = {φ, ψ}+

1

Rm
∇2ψ. (4.2)

Here, MA is the Alfvén Mach number, or the ratio of the equilibrium flow

speed to the Alfvén speed, and scales like MA ∝ Ū0/B̄0; Re and Rm

are the Reynolds and magnetic Reynolds numbers, respectively, defined as

Re = Ū0d̄/ν̄ and Rm = Ū0d̄/µ̄ where ν̄ and µ̄ are kinematic viscosity and

1Note that the directions of flow and shear here are the same as in Chapter 2 but not Chapter 3.
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resistivity; and {f, g} ≡ ∂xf∂zg − ∂xg∂zf . Equation (4.1) describes the

evolution of the vorticity ∇×v = ∇2φŷ. The second term on the left-hand

side is the vorticity advection term, the first term on the right-hand side is

the curl of the Lorentz force, and the second term on the right-hand side is

standard viscous dissipation. The terms on the right-hand side of Eq. (4.2)

correspond to flux advection and resistive diffusion. This system, with the

above equilibrium, is known to be linearly unstable for MA above a critical

threshold that lies between 1 and 2 (Palotti et al. 2008).

4.2.2 Perturbation equations

As will be described in Sec. 4.2.3, we solve Eqs. (4.1) and (4.2)

numerically using the code Dedalus (Burns et al. 2020), specifically its initial

value problem solvers. Additionally, we use Dedalus’ eigenvalue problem

solvers to calculate the complex frequencies (eigenvalues) and eigenmodes

of these equations linearized about an unstable equilibrium. While initial

value calculations can be used to obtain the mode structure and complex

frequency of the fastest-growing eigenmode at each kx, solving the linearized

system as an eigenvalue problem allows other modes at the same kx to

be calculated as well, namely stable modes. This is necessary to track

the amplitudes of these modes in the ensuing turbulence in the initial

value calculations, which then informs how much energy they remove from
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fluctuations (Makwana et al. 2014). As with previous studies of stable

modes in shear-flow turbulence (Fraser et al. 2017, 2018), we are specifically

interested in the dissipationless modes of this system, so eigenmodes are

calculated with viscosity and resistivity neglected.

To derive linearized equations, we separate the system into an arbitrary,

horizontal, uniform (in x) background flow U(z) and field Bx(z), and

perturbations φ̃ and ψ̃. This allows Eqs. (4.1) and (4.2) to be similarly

separated into equations describing the background, and the following

equations for the perturbations:

∂

∂t
∇2φ̃ =− U ∂

∂x
∇2φ̃+ U ′′

∂

∂x
φ̃+

1

M 2
A

(
Bx

∂

∂x
∇2ψ̃ −B′′x

∂

∂x
ψ̃

)

−
{
∇2φ̃, φ̃

}
+

1

M 2
A

{
∇2ψ̃, ψ̃

}
,

(4.3)

and

∂

∂t
ψ̃ = −U ∂

∂x
ψ̃ +Bx

∂

∂x
φ̃+

{
φ̃, ψ̃

}
, (4.4)

where primes denote derivatives with respect to z, and we have neglected

viscosity and resistivity. Equations (4.3) and (4.4) are the MHD equivalent

of Eq. (1) in Fraser et al. (2017), and describe how fluctuations interact

linearly with the background flow and field, and nonlinearly with one

another. When the fluctuations are small enough that the nonlinearities can

be neglected, Fourier transforming Eqs. (4.3) and (4.4) in x and assuming



131

solutions vary in time as eiω(kx)t yields

ω

(
d2

dz2
− k2

x

)
φ̂ =− kxU

(
d2

dz2
− k2

x

)
φ̂+ kxU

′′φ̂

+
1

M 2
A

[
kxBx

(
d2

dz2
− k2

x

)
ψ̂ − kxB′′xψ̂

] (4.5)

and

ωψ̂ = −kxUψ̂ + kxBxφ̂, (4.6)

where φ̂ and ψ̂ are the Fourier transforms (from x to kx) of φ̃ and ψ̃.

Thus, at every kx, we have a separate system of linear, ordinary differential

equations in z. For a given kx and MA, arbitrary U(z) and Bx(z), and

appropriate choice of boundary conditions, this system forms a generalized

eigenvalue problem that can be solved to obtain a spectrum of eigenvalues ωj

and eigenmodes (φj(z), ψj(z)), where j = 1, 2, . . . enumerates the different

solutions at each kx. Each eigenmode is specified by both a φ component

and a ψ component. For the remainder of this chapter, the notation

~fj ≡ (φj(z), ψj(z)) is occasionally used to refer to the entirety of an

eigenmode.

4.2.3 Numerical implementation

Dedalus is a pseudo-spectral code with a variety of spectral bases

available. We employ Fourier modes eikxx in the x direction and Chebyshev

polynomials Tn(z) in z. Our simulation domain size is Lx×Lz = 10π×10π,
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thus the minimum horizontal wavenumber is kx = 0.2, with periodic

boundaries at x = ±Lx/2 and perfectly conducting, no-slip, co-moving

(with the equilibrium flow V0) walls at z = ±Lz/2. The simulations

presented here use a resolution of Nx ×Nz = 512× 2048, with convergence

tests performed at the highest values of Rm by checking that changes in

spectral energy density and dissipation with resolution are minimal. This

z-resolution is higher than what others have observed to be necessary for

well-resolved simulations. However, many of our eigenmode-based post-

processing analyses benefit from increased Nz, as it allows continuum modes

(Case 1960) to be better-resolved.

Previous work has shown that the nonlinear development of KH-

unstable flows depends sensitively on the choice of the initial perturbations

that seed the instability (Dong et al. 2019). In studying free shear layers, a

common choice of initial condition is a perturbation in one or more velocity

fields that is sinusoidal in x, with a wavelength that matches the box size

or the fastest-growing linear mode, and Gaussian in z centered about the

shear layer (Lecoanet et al. 2016; Palotti et al. 2008), with lower-amplitude

noise sometimes added to other horizontal wavenumbers (Mak et al. 2017).

Here, we perturb both φ and ψ at every nonzero kx with Gaussians in z

that have randomly-assigned, kx-dependent complex phases and amplitudes
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that decrease with kx as a power law. Thus, at t = 0 the streamfunction

and flux functions are

φ(x, z) =
∑

kx

φ̂(kx, z) = φ̂(0, z) + Aφ

∑

kx>0

kaxe
i∆φ(kx)−z2/σ2

, (4.7)

and

ψ(x, z) =
∑

kx

ψ̂(kx, z) = ψ̂(0, z) + Aψ

∑

kx>0

kaxe
i∆ψ(kx)−z2/σ2

, (4.8)

where the kx = 0 components are the unperturbed equilibrium profiles, Aφ

and Aψ set overall amplitudes for the perturbations, a sets the steepness of

the energy spectra of the perturbations, σ sets the width of the Gaussian

in z, and at every nonzero kx, ∆φ(kx) and ∆ψ(kx) are uniformly-distributed

pseudo-random numbers in [0, 2π). For the results presented here, we use

σ = 2, a = −1, and Aφ = Aψ = 5× 10−4, which allows for a clearly-defined

linear growth phase before nonlinear interactions become important. For

MA = 5, setting Aψ = 0 did not noticeably change how the instability

saturated. This is likely a result of the flow-dominated nature of the

instability and the well-defined linear growth phase permitted by our small

value of Aφ.

Previous work (Dong et al. 2019) has shown that even when only

two wavenumbers are perturbed, the details of the nonlinear stage after

the instability saturates are sensitive to the complex phase differences
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and relative amplitudes between different kx, the overall amplitude of the

perturbation, and the structure in z of the perturbations. In this work,

we are interested in studying details of the saturated state as MA and

Rm are varied. In an effort to ensure that our observed trends are not

a unique feature of a particular choice of initial conditions, we perform

multiple simulations at each MA and Rm, with different ensembles of ∆φ

and ∆ψ. In practice, this is done by selecting different seeds for our pseudo-

random number generator, and using the same seeds for different MA and

Rm so that MA and Rm can be varied independently with ∆φ and ∆ψ held

fixed. For each value of MA and Rm presented here, at least five different

sets of initial conditions were simulated. While the majority of this chapter

presents results from only one set of initial conditions, we focus on results

we found to be robust and broadly representative of the range of initial

conditions we sampled.

4.3 Eigenmodes, eigenvalues for the U = tanh(z), Bx = 1 equilib-

rium

The initial perturbations in our nonlinear simulations are small enough

to allow a phase of linear growth before nonlinear interactions become rel-

evant. Thus we first describe the linear modes obtained from eigenvalue

calculations before describing the ensuing nonlinear stages of the simula-
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tions.

Equations (4.5) and (4.6) describe linear fluctuations about an arbitrary

background flow U and field Bx so long as it is uniform in x. The background

flow and field about which our nonlinear simulations are perturbed is

U = tanh(z) and Bx = 1. For this U and Bx, unstable modes, with positive

growth rates γj = −Im[ωj], are observed as expected for wavenumbers in

the range 0 < kx < 1 as long as MA is above a critical threshold between

1 and 2. The growth rate of the fastest-growing mode for this system is

plotted against kx for a variety of MA in Fig. 4.1. While the magnetic field

stabilizes the instability if it is strong enough to bring MA below the critical

0.0 0.2 0.4 0.6 0.8 1.0
kx

0.00

0.05

0.10

0.15

0.20

γ

MA = 3.0

MA = 4.0

MA = 8.0

MA = 40.0

Figure 4.1 Growth rate γ for the fastest-growing mode at each kx. Each curve corresponds
to a different Alfvén Mach number MA. While stronger magnetic fields (lower MA) provide
a stabilizing influence, γ varies little except when MA . 4. Horizontal dashed lines indicate
the kx present in our nonlinear simulations. Data provided courtesy of J.M. Schroeder.
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threshold, and it noticeably reduces the growth rate for MA slightly above

the threshold, its stabilizing influence appears to be almost negligible for

MA & 8.

Taking the complex conjugate of Eqs. (4.5) and (4.6) shows that, as

in the hydrodynamic case (Drazin & Reid 1981) and the gyrokinetic case

(Fraser et al. 2018), for every eigenvalue ωj and eigenmode (φj, ψj) that is a

solution to Eqs. (4.5) and (4.6), the complex conjugate ω∗j and (φ∗j , ψ
∗
j ) is a

solution as well. Following Chapters 2 and 3 of this thesis, when describing

the eigenmodes of the U = tanh(z), Bx = 1 system, we label the most

unstable mode at each kx as j = 1 and label its conjugate stable mode

as j = 2. Real-space contours corresponding to φj and ψj for j = 1 and

j = 2 at MA = 40, kx = 0.4 are shown in Fig. 4.2. The streamlines of the

flow look qualitatively similar to the piecewise-linear profile (Fraser et al.

2017). While the flow component of the mode can be roughly described

as a superposition of two waves of vorticity localized about the edges of

the layer (a wealth of literature exists on this subject, see, e.g., Baines &

Mitsudera (1994); Heifetz et al. (2015); Heifetz & Guha (2019); Carpenter

et al. (2013)), the current density of the mode is more localized about the

center of the layer. The stable mode is identical in both φ and ψ to the

unstable mode under the reflection in x→ −x.
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The source of free energy that drives the exponential growth of the

unstable mode is the equilibrium flow U(z). In terms of Eqs. (4.3) and

(4.4), the growth of the mode is due to the (dissipationless) linear terms

on the on right-hand side. These terms were derived by linearizing the

familiar energy-conserving nonlinearities in Eqs. (4.1) and (4.2) about U(z)

and Bx(z). If U(z) and Bx(z) are identified as the horizontally-averaged

flow and field and held fixed in time, so that only kx 6= 0 perturbations
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Figure 4.2 The initial U = tanh(z) unstable equilibrium flow (top left) and uniform field
(bottom left) are shown alongside contours of the streamfunction (center column) and flux
function (right column) for the unstable (top) and stable (bottom) modes at kx = 0.4 for
MA = 40.
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are allowed to evolve, as was considered in Fraser et al. (2017), then this

exponential growth does not conserve energy, because the energy injected

into ~f1 is not self-consistently removed from the mean flow. This is similarly

the case in most δf gyrokinetic simulations with fixed background gradients.

However, in direct numerical simulations of Eqs. (4.1) and (4.2), energy is

conservatively transferred from the equilibrium to growing perturbations

by the nonlinearities. Viewed in terms of a separation between the mean

and kx 6= 0 fluctuations, the removal of energy from U(z) occurs via the

xz components of the Reynolds and/or Maxwell stress tensors, which we

denote as

τu ≡ −
〈
∂

∂x
φ̃
∂

∂z
φ̃

〉

x

, (4.9)

and

τb ≡
1

M 2
A

〈
∂

∂x
ψ̃
∂

∂z
ψ̃

〉

x

, (4.10)

where 〈·〉x indicates an average in x. These stresses transport horizontal

momentum along the vertical axis and evolve the mean flow according to

(neglecting viscosity)

∂

∂t
〈U〉x =

∂

∂z
(τu + τb) , (4.11)

with a transport of momentum down the gradient, i.e., a flux of x-directed

momentum in the −z direction if U(z) = tanh(z), lowering the kinetic
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energy of the mean flow.2

Similarly, the exponential decay of the conjugate stable mode ~f2 does

not conserve energy if U(z) and Bx(z) are held fixed – thus in most

gyrokinetic δf simulations, stable modes are a nonconservative energy sink

– but does conserve energy when directly simulating Eqs. (4.1) and (4.2),

with energy injection into the mean provided by the same stresses (as will

be shown in Sec. 4.5.2, a minimal amount of energy is also transferred into

the mean field). This is illustrated in Fig. 4.3, where the Reynolds and

Maxwell stresses are shown for ~f1 and ~f2 at kx = 0.4 for both MA = 25 and

2Regarding the equivalence between energy transfer and momentum transport in the hydrodynamic
case, see discussion of the Reynolds-Orr energy equation in Drazin (2002) Sec. 5.3, as well as the last
paragraph in Sec. 8.2
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MA = 2. For unstable modes, both τu and τb transport momentum down the

gradient, so that they both contribute to a transfer of energy from U(z) to ~f1.

Likewise, for stable modes, both stresses yield counter-gradient momentum

transport, transferring energy from ~f2 to U(z). The transport of the two

modes is symmetric in the sense that τu[φ2] = −τu[φ1] and τb[ψ2] = −τb[ψ1].

As MA is decreased, corresponding to a stronger equilibrium field, the

relative amplitudes of τu and τb change, with |τb| exceeding |τu| for only

the strongest equilibrium fields, starting around MA ≈ 2.5.

4.4 Hydrodynamic evolution

Here we discuss direct numerical simulations of Eqs. (4.1) and (4.2)

and how they vary with MA and Rm. As the hydrodynamic case is simpler

and the effects of stable modes there have already been studied, we begin

with an overview of the hydrodynamic system, obtained by solving Eq. (4.1)

alone with ψ = 0. While 2D, incompressible, unstratified, hydrodynamic

shear flows are well-studied and our findings are consistent with previous

work, we present an overview for the sake of contrasting with the MHD case.

All simulations presented here, both hydrodynamic and MHD, are run with

Re = 500.

Thanks to our initial perturbations being sufficiently small in ampli-

tude, the initial stage of our simulations is dominated by a well-defined lin-
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ear growth phase for each of the linearly unstable horizontal wavenumbers,

kx = 0.2, 0.4, 0.6, and 0.8, after a brief transient stage. This can be seen

in Fig. 4.4, where KEkx, the 1D spectral kinetic energy density defined such

that KE =
∫
|v|2dxdz/2 =

∑
kx

KEkx, is plotted for two nearly-identical

hydrodynamic simulations whose only difference is the complex phase of

different kx components of the initial perturbation, i.e., ∆φ(kx) in Eq. (4.7).

Consistent with previous work (Dong et al. 2019), the initial condition has

a negligible impact on the time at which the fastest-growing Fourier mode,

kx = 0.4, first saturates, where saturation can loosely be defined in this

context to mean the time at which KEkx reaches its first local maximum –

although for convenience we define saturation of the kx = 0.2 mode as the

time at which it reaches its first local maximum after the kx = 0.4 mode

saturates. The saturation of other modes is more significantly affected by

∆φ(kx), particularly kx = 0.2, which eventually contains the most energy of

the nonzero kx components. Of the simulations performed, the two shown

in Fig. 4.4 are characteristic of the initial conditions leading to the slowest

(left) and fastest (right) saturation times for the kx = 0.2 component. Ad-

ditionally, the linear growth regime ends sooner for the higher kx modes,

kx = 0.6 and 0.8, than it does for the lower wavenumbers. This will be

shown later to be caused by quasilinear flattening affecting these modes
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sooner – the linear growth rate calculated from the horizontally-averaged

flow 〈U〉x at each time decreases much more rapidly for shorter-wavelength

modes than it does for longer-wavelength ones, causing their linear inter-

actions to be overtaken by nonlinear effects sooner. The higher-kx modes

stabilizing first is consistent with the maximum wavenumber for instability

decreasing from its initial value as the layer broadens in the hydrodynamic

case, see, e.g., Fig. 6 in Hurst et al. (2020).

Without analyzing the role of different linear modes in these simulations

in detail, characteristic signatures of inviscid stable modes can already be

identified in Fig. 4.4. A close inspection of the kinetic energy in the mean

flow KEkx=0 (plotted on a linear scale in Fig. 4.8) reveals instances of energy
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Figure 4.4 Kinetic energy versus time for kx = 0 through 0.8 in two hydrodynamic
simulations with different initial conditions, specifically different ∆φ(kx), corresponding to
the two panels. While ∆φ(kx) has little effect on the saturation time for kx = 0.4 (green) it
has a significant effect on the saturation time for kx = 0.2 (orange) (cf. Dong et al. 2019).
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transfer back into the mean flow. These events coincide with a loss of energy

from large-scale fluctuations following their initial saturation levels. As per

the dicsussion in Sec. 4.3, this is consistent with stable mode activity.

The onsets of saturation for kx = 0.4 and kx = 0.2 are of particular

interest as they correspond to large-scale structures observed in the flow.

Figure 4.5 shows snapshots of vorticity ∇2φ in color with black overlaid

contours of the streamfunction φ (corresponding to streamlines of the flow,

with regions of closely-spaced contour lines corresponding to faster flow

speeds) at four different times for the simulation shown on the left in Fig. 4.4.

The four times are chosen to roughly illustrate the initial configuration (after

apparent transients have faded), the linear growth regime, the saturation of

the kx = 0.4 Fourier mode, and the saturation of the kx = 0.2 Fourier

mode. When kx = 0.4 first saturates at roughly t ≈ 40, this can be seen

to correspond to the formation of two coherent vortices. These vortices are

connected by thin filaments of vorticity, commonly referred to as braids,

that are known to be sites of highly strained flow. As is standard in

2D, unstratified, incompressible, hydrodynamic shear layers, the subsequent

evolution consists of neighboring vortices merging to form larger vortices

that eventually undergo their own merging process. This progression of

mergers typically halts when the resulting vortex size is limited by the
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size of the domain. Our domain size restricts this process to only a single

merging event where the two precursor vortices merge into one larger vortex.

Consistent with previous work (Dong et al. 2019), this merging process is

seen to correspond to saturation of the kx = 0.2 Fourier mode, and the

time it takes to occur depends significantly on initial conditions. The single-

vortex state that follows continues without any dramatic changes as viscosity

and our chosen boundary conditions slowly act to dissipate the vortex and

presumably relax the system to one of plane Couette flow. This occurs on

a longer timescale than what we simulated.

4.5 MHD system, weak-field regime

Compared to its hydrodynamic counterpart, the flow in the MHD sys-

tem evolves similarly provided that the Lorentz force is weak throughout the

simulation. At early times this is guaranteed by a high MA, corresponding

to a weak initial magnetic field. Previous work has shown that an initially

weak magnetic field embedded in an electrically conducting fluid can be

amplified by vortices (Mak et al. 2017) and regions of high strain (Zweibel

1998; see also Zel’Dovich et al. 1984), both of which are present in this sys-

tem in the form of the vortices and their connecting braids. In both Mak

et al. (2017) and Zweibel (1998) this amplification was shown to increase

with Rm, as is the case in our simulations as well. The greater the extent to
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which the field is frozen into the flow (i.e. higher Rm), the more efficiently

the flow is able to twist and compress field lines and amplify the Lorentz

force. Thus, in addition to high MA, a sufficiently low Rm is necessary for

the dynamics to remain nearly hydrodynamic.

The following subsections first present how departures from the hydro-

dynamic regime can be identified in terms of flow features, energy content,

and momentum transport. There, indications of stable mode activity vary-
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Figure 4.5 Snapshots of the vorticity and streamlines near the shear layer at four different
times for the simulation on the left in Fig. 4.4. Color shows vorticity ∇2φ, black lines show
contours of the streamfunction φ, representing streamlines of the flow. Colorbar normalized
with ∇2φ = 1 as the maximum and −1 as the minimum with white as 0 to demonstrate
that, here, all of the vorticity is into the page, consistent with the conservative, advection-
diffusion nature of the vorticity equation.
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ing with field strength provided by the energy and momentum diagnostics

are discussed. These indications are discussed to demonstrate that stable

and unstable modes provide a useful framework for interpreting the dynam-

ics and the trends with field strength. Several subtleties, justifications, and

additional uses for this framework are described in Sec. 4.5.4 and Sec. 4.5.5.

However, one simple justification is presented here to lay the groundwork

for the remainder of this section, and so that the reader is not expected to

be unduly trusting until Sec. 4.5.4.

In Fraser et al. (2017) an expression for the momentum transport S

obtained by integrating the Reynolds stress about the edge of the shear

layer was given in terms of the amplitudes βj of stable and unstable modes

(see Eq. (2.23) of this thesis). For modes with zero real frequency such

as the stable and unstable modes of the equilibrium considered here, the

βmβ
∗
n cross terms cancel leaving an expression of the form S ∝ |β2|2− |β1|2.

Despite significant differences between the present system and the one

studied in Fraser et al. (2017), this relationship between Reynolds stress

and mode amplitudes remains valid. This is shown in Fig. 4.6, where the

contribution to τu by kx = 0.2 and kx = 0.4 fluctuations are evaluated

at z = 0 and plotted over time for simulations with different MA. The

expression |β2|2 − |β1|2 is plotted as well. The two quantities are seen to
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agree remarkably well up to a constant of proportionality that depends on

kx but not on MA. This motivates the use of Reynolds stress as a proxy for

the relative amplitudes between stable and unstable eigenmodes.

4.5.1 Flow, field features

Figure 4.7 shows snapshots of the flow and field at t = 40, 60, and 150

for a simulation with MA = 60, Rm = 250, and an identical initial ∆φ(kx) to

the simulation shown in Fig. 4.5 (the initial ∆ψ(kx), when varied by itself,

was not observed to affect the evolution of the system in any significant

way). By the time the fastest-growing mode saturates at t = 40, current

sheets form primarily along the braids connecting the KH rollers due to
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Figure 4.6 Dashed curves show the contribution to Reynolds stress τu made by fluctua-
tions at kx = 0.2 (left) and 0.4 (right) evaluated at z = 0 versus time for simulations with
three different MA. Solid curves show the quantity |β2|2 − |β1|2 over time for the same

simulations, where βj is the amplitude of mode ~fj, described in detail in Sec. 4.5.4. The
agreement between the two quantities justifies the use of τu as a proxy for relative mode
amplitudes.



148

the high strain rate of the flow. Despite this field amplification, no back-

reaction onto the flow is discernible when compared to the hydrodynamic

case in Fig. 4.5, and the vortex merging process remains essentially the

same. By t = 150, well into the single-vortex stage, stronger current sheets

have formed both near the stagnation point and at the edge of the vortex,

after field lines within the vortex have reconnected and drifted outwards by

a process known as flux expulsion (Weiss 1966). Regions of slightly negative

vorticity have formed due to the Lorentz force, mostly near the stagnation

−10

0

10

z

t = 40.0 t = 90.0 t = 150.0

−10 0 10

x

−10

0

10

z

−10 0 10

x
−10 0 10

x

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

∇2φ

−60
−40
−20
0
20
40
60

∇2ψ

Figure 4.7 Snapshots of the flow (top) and field (bottom) near the shear layer at three
times in a simulation with MA = 60 and Rm = 250. Black lines are contours of φ (top) and
ψ (bottom), representing streamlines and field lines, and color represents vorticity (top)
and current density (bottom) into the page. Current sheets form early in the simulation
along the braids between vortices, as well as at the edges of the vortex at later times.
Even at this high MA and low Rm, the Lorentz force breaks vorticity conservation and
introduces some negative vorticity late in the simulation, presenting a departure from the
hydrodynamic evolution.
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point, though the overall flow structure remains similar to the hydrodynamic

case.

4.5.2 Energy content

The top row of Fig. 4.8 shows different components of energy over time

for the simulation in Fig. 4.7 in solid, dashed, and dot-dashed lines, with

dotted lines shows the kinetic energy for the hydrodynamic simulation in

Fig. 4.5. Comparing the solid and dotted lines for the smallest non-zero

kx shows that the initial saturation and merging states exhibit no dramatic

changes between the hydrodynamic and MHD simulations. However, the

kinetic energy in the largest scales depletes more quickly as time goes on in

the MHD case. Meanwhile, the MHD simulation has slightly greater kinetic

energy at small scales (purple curve) than the hydrodynamic counterpart,

and even more magnetic energy than kinetic energy.3 Evidently, even this

weak magnetic field enhances the transfer of energy from large to small

scales. In other systems, stable mode activity reduces the rate at which

energy is transferred to smaller scales (Makwana et al. 2014), suggesting

that the enhanced energy transfer here is a consequence of stable modes

3Figure 4.7 shows the dominant flow structures are broadly isotropic while the dominant field structures
are clearly not, as evidenced by the long, thin current sheets. Therefore, while identifying large kx with
small-scale fluctuations and small kx with large-scale fluctuations seems appropriate for the flow, it is
somewhat misleading for the field. For instance, the low-kx Fourier components of ψ̂ certainly include
structures that are small scale in z. Nevertheless, this identification provides a helpful framework for
interpreting the results. Also, high-kx components of ψ̂ certainly do correspond to small-scale structures.
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becoming less important relative to the hydrodynamic case.

The total kinetic energy in kx > 0 modes is significantly greater than

the corresponding magnetic energy, which was shown in Mak et al. (2017)

to be an indication that the effect of the Lorentz force on the flow is almost
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negligible. By comparing KEkx=0.2 and KEkx=0.4 to
∑

kx>0 KEkx, the kinetic

energy in the fluctuations is seen to be concentrated in the largest scales.

Meanwhile, the fluctuating field is seen to be mostly dominated by smaller

scales. This will be shown in Sec. 4.5.3 to be consistent with the contribution

to momentum transport made by flow and field fluctuations at different

scales. Comparing the total energy summed over all wavenumbers between

the hydrodynamic and MHD simulations shows that the added magnetic

field, though weak, noticeably increases the rate at which energy is lost to

dissipation.

The bottom row of Fig. 4.8 corresponds to a simulation with the same

initial conditions, but with MA = 40 and Rm = 500. Compared to the top

row, each of the departures from the hydrodynamic case described above is

more pronounced, especially later in the simulation when the magnetic field

has become more amplified due to the higher Rm. The kinetic energy at

the largest scales and the total energy in the whole system both dissipate

more quickly, the kinetic energy at small scales is somewhat larger, and the

magnetic energy at small scales is much larger. This suggests that stable

modes play less of a role as the field strength is increased. While both

MA and Rm have been varied between these two simulations, these trends

similarly hold when only one parameter is varied.
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With counter-gradient momentum transport understood to be a sign

of stable mode activity, and momentum transport being linked to KEkx=0,

additional evidence for stable mode activity can be shown in Fig. 4.8. When-

ever KEkx=0 reaches a local minimum in time, the subsequent increase in

KEkx=0 indicates counter-gradient momentum transport, and thus stable

mode amplitudes exceeding unstable mode amplitudes. These local minima

in KEkx=0 are accompanied by local maxima of kinetic energy in most ener-

getic wavenumber, kx = 0.2 or 0.4, pointing towards significant energy ex-

change between these modes and the mean flow (as is further demonstrated

in terms of Reynolds and Maxwell stresses in the following subsection). The

top row of Fig. 4.8 shows that kinetic energy in these large scales gener-

ally remains lower in the MHD cases than the hydrodynamic one, while the

bottom row shows it becomes even lower in the stronger-field case. The

enhanced transfer of energy to small scales caused by the magnetic field

has in some sense damped the larger scales. This effective damping leaves

an imprint on the signs of stable and unstable mode activity. Comparing

the local minimum in KEkx=0 around t ≈ 90 between the hydrodynamic

and MHD cases shows that the reduced energy content in kx = 0.2 leads

to both a decrease in down-gradient transport leading into the minimum

and a decrease in counter-gradient transport after the minimum. This is
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consistent with a decrease in both unstable and stable mode activity, as is

seen in Fig. 4.6 where the difference in square amplitudes of the two modes

gets closer to 0 on either side of t ≈ 90 as MA decreases. A decrease in this

difference can either arise from both stable and unstable mode amplitudes

decreasing, or from their amplitudes reaching more similar values (e.g. the

stable mode amplitude increasing until it is equal to the unstable mode am-

plitude). In Sec. 4.5.4, both effects are shown to occur here, with the former

more dominant, which is consistent with the observations presented here.

The enhanced transfer of energy to small scales and the overall increase in

the rate at which kinetic energy is removed from the mean flow suggest a

greater disruption of stable mode activity than unstable mode activity. This

is reminiscent of the damping term included in Fraser et al. (2018) that pref-

erentially affected large-scale fluctuations and was shown to suppress stable

modes more than it suppressed unstable modes.

The enhanced transfer of energy to small scales coincides with an overall

increase in energy dissipation. While the MHD case does have more kinetic

energy at small scales than its hydrodynamic counterpart, the increased

dissipation is almost entirely due to the addition of resistive dissipation.

This is seen in Fig. 4.9, where viscous and resistive dissipation are plotted

for a variety of simulations, each with the same initial condition but different
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MA and Rm. For simulations where the amplified field is not sufficiently

strong, the viscous dissipation remains essentially identical to that of the

hydrodynamic case. This threshold depends on both MA and Rm. For

MA = 60, viscosity doesn’t increase until Rm reaches 1000, while for

MA = 40 the Rm = 500 simulation does exhibit enhanced viscosity while the

Rm = 250 case (not shown) does not. Resistive dissipation, on the other

hand, matches or even exceeds viscous dissipation, consistent with small

scales being dominated more by magnetic than kinetic energy. As expected

from Eq. (6) in Zweibel (1998), the local maxima in resistive dissipation are
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greater and occur later with increasing Rm, as the current sheets formed

by the high-strain-rate flow take longer to reach small enough scales that

resistivity overtakes flux advection.4 While MA has no clear effect on the

time of these local maxima in high-MA simulations, it does affect the overall

level of resistive dissipation, with stronger fields (lower MA) yielding greater

resistive dissipation. This can be understood as a lower MA increasing the

amplitude of the magnetic fluctuations that reach small scales.
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Figure 4.10 Kinetic energy over time in the mean flow, KEkx=0, for a variety of MA.
Each simulation has Rm = 500 and the same initial conditions as Fig. 4.7. As field
strength increases (MA decreases), KEkx=0 decreases more rapidly and its local minima,
which indicate phases of counter-gradient momentum transport, weaken and gradually
cease.



156

4.5.3 Momentum transport

The previous subsection noted that as magnetic field strength increases,

the local minima in time of the kinetic energy of the mean flow KEkx=0 be-

come less pronounced. Figure 4.10 shows KEkx=0 versus time for simulations

with Rm = 500, the same initial conditions as the simulation in Fig. 4.7,

and a variety of MA. As field strength increases, the local minima become

less pronounced and gradually vanish. The minima that occur latest in

the simulation are the first to vanish, while the earliest minimum remains

until MA ≈ 10. Beyond the suppression of these local minima, KEkx=0 de-

cays more rapidly overall with stronger fields, consistent with the increased

transfer to small scales and energy dissipation noted in the previous subsec-

tion. This is robust to changes in initial conditions. While different initial

conditions affect the exact times at which local minima in KEkx=0 occur (ex-

cept for the first one, as was shown in Fig. 4.4), the broad trends described

throughout this subsection apply to all our tested initial conditions.

The momentum transport at four different times for the simulation in

4This trend is mostly robust to changes in initial conditions. However, note that for initial conditions
where the merging of the two initial vortices occurs rapidly, the first peak in resistive dissipation may be
determined by the time when the merging process disrupts the first current sheet along the braid between
the two vortices (e.g. the current sheet seen at t = 40 in Fig. 4.7), rather than being determined by resistive
effects disrupting the sheet (Zweibel 1998). For these reasons, care must be taken when studying dissipative
processes in KH-unstable systems in MHD to consider appropriate initial conditions, box sizes that permit
mergers if relevant (although Mak et al. 2017, were more interested in the dynamics of a single vortex, not
necessarily KH), and explicit dissipation wherever possible.
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Figure 4.11 Different contributions to momentum transport at four different times for
the same simulation as in Fig. 4.7. Solid lines show Reynolds stresses τu and dashed lines
show Maxwell stresses τb (rescaled by a factor of 100 for improved visibility). Black lines
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Fig. 4.7 is broken into different components in Fig. 4.11. The transport is

separated both into Reynolds stress τu versus Maxwell stress τb and into

contributions from different kx. The four times shown are shortly before

and after the first two local minima in KEkx=0. At all times, Reynolds stress

dominates Maxwell stress by over an order of magnitude. The Reynolds

stress is dominated first by kx = 0.4 and then by kx = 0.2, consistent with

these scales containing the majority of the kinetic energy in the fluctuations

about the mean. This further demonstrates that the local minima in KEkx=0

are due to nonlinear interactions with these two wavenumbers, serving to

establish the connection made in the previous subsection between Fig. 4.6

and trends in KEkx=0. The shapes of the Reynolds stress curves at these

scales resemble the Reynolds stresses of the eigenmodes shown in Fig. 4.3,

with the curves broadening at later times, consistent with the broadening

of the flow profile. The Maxwell stress, on the other hand, is dominated

by scales beyond the initially unstable range, aside from the very first

panel, again consistent with the breakdown of magnetic energy shown in

Fig. 4.8. The Maxwell stress curves bear less of a resemblance to those

of the eigenmodes shown in Fig. 4.3, particularly as time goes on. When

counter-gradient momentum transport does occur, it is always due to the

Reynolds stress changing sign. The Maxwell stress consistently transports
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momentum down the gradient, though not in a way that is captured by a

simple Fick’s law.

It can be shown that a linear combination of ~f1 and ~f2 alone will

always yield Reynolds and Maxwell stresses of the same sign, with the sign

determined by whichever mode has a higher amplitude. Thus, because τu

and τb have opposite signs at some times in these simulations, models that

incorporate only these two modes (Fraser et al. 2018) cannot accurately

descibe both τu and τb. It is therefore not immediately obvious that

down-gradient and counter-gradient momentum transport can be taken as

universal indicators of unstable and stable mode activity, as was done in

discussing KEkx=0. Fortunately, we have demonstrated in Fig. 4.6 that

isolating the τu contribution to transport does provide such an indicator.

Furthermore, τu dominates over τb at weaker field strengths (where this

threshold depends on MA, Rm, and t). Thus, their combined momentum

transport, which can be gleaned from timetraces of KEkx=0, can be traced

to stable mode activity.

Figure 4.12 shows how the Reynolds and Maxwell stresses change with

MA, focusing on the first two counter-gradient transport phases. As field

strength increases, either because of a stronger initial field from a decreased

MA or more field amplification from an increased Rm (not shown), |τb|
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increases. This reduces the net counter-gradient transport during these

phases and increases down-gradient transport at other times. In the first

phase of counter-gradient transport, τu remains mostly unchanged with MA.

Thus, the relative amplitudes between stable and unstable modes does not

significantly change with MA at this time (this is further confirmed by

referring back to Fig. 4.6). So while stable mode activity does become less

prominent at this time as field strength increases, it is not due to a clear
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Figure 4.12 The same breakdown of stresses as in Fig. 4.11, but for four simulations
with Rm = 500 and different MA (one column per simulation). The two rows correspond
to the first two instances of counter-gradient momentum transport. Note τb is rescaled by
a factor of 10. As MA decreases, τb becomes more dominant, reducing net counter-gradient
transport. At earlier times |τu| varies little with MA, but at later times it decreases with
stronger fields
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suppression of stable modes relative to unstable ones (cf. Fraser et al. 2018)

and a corresponding decrease in counter-gradient τu. Instead, the influence

of large-scale stable modes has become less prominent due to an increase in

energy transfer to small scales leading to increased |τb(kx)| for large kx.
5 For

Rm = 500, this holds true for all simulations with MA & 5. For lower MA,

the counter-gradient τu(kx = 0.4) at this time does become partially reduced

and then fully removed as MA decreases, and τb remains down-gradient but

becomes dominated by larger scales.

In the second phase of counter-gradient transport, the dominant con-

tributor to the Reynolds stress, kx = 0.2, becomes noticeably weaker with

stronger fields. This trend in τu amplitudes is similar to what happens dur-

ing the down-gradient transport phases at t = 40 and 85: |τu| becomes

weaker as field strength increases at later times (the second local minimum

of KEkx=0), but does not change with MA at earlier times (the first local

minimum). However, the variation in |τu| with MA is slightly greater during

counter-gradient phases than down-gradient ones. Using τu as a proxy for

relative amplitudes of stable and unstable modes, this would suggest that

both stable and unstable mode amplitudes are reduced as field strength

increases, with a slightly larger effect on stable modes.

5In terms of the Pt analysis presented in Appendix C, one might speculate that this can be related to
an increase in the denominator in Eq. (C9), rather than a decrease in the numerator.
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From these results, the overall increase in down-gradient transport and

decrease in KEkx=0 with field strength can be interpreted as a combination of

two factors. First, reduced counter-gradient transport from large-scale flow

fluctuations, and second, enhanced down-gradient transport from small-

scale field fluctuations. The former is a direct result of decreased stable

mode amplitudes (Fraser et al. 2017), while the latter is an indirect result of

stable modes playing a less prominent role in this system, and thus allowing

more energy to reach small scales (Makwana et al. 2014).

4.5.4 Directly calculating stable mode excitation

The potential for large-scale inviscid stable modes to drive counter-

gradient momentum transport provided they reach sufficient amplitude has

been presented in Fraser et al. (2017) for a simpler system and Fig. 4.3 for

the present one. Conversely, reversals in τu have been used as a proxy for

stable mode activity throughout this section, justified in large part by the

observation presented in Fig. 4.6 that τu evaluated at the center of the layer

for a given wavenumber is directly proportional to |β2|2−|β1|2 at that same

wavenumber. Here, we perform eigenmode decompositions of our nonlinear

simulations to more carefully validate this proxy and specify the physical

meaning of the mode amplitudes plotted in Fig. 4.6 when considering a

system where the mean flow evolves freely.
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At every time t in a simulation of Eqs. (4.1) and (4.2), the system

state f̂(kx, z, t) ≡ (φ̂(kx, z, t), ψ̂(kx, z, t)) evaluated at a wavenumber kx for

which we have an appropriate (defined in Appendix A) set of eigenmodes

{~fj(kx, z)} can be expressed as

f̂(kx, z, t) =
∑

j

βj(kx, t)~fj(kx, z). (4.12)

In this section, we calculate the complex, time-dependent amplitudes βj of

various eigenmodes ~fj as the system evolves in our nonlinear simulations.

This is done using similar methods to Hatch et al. (2011), Terry et al.

(2014), and Fraser et al. (2018). Mathematical details concerning why

these amplitudes are well-defined and unique, how they can generally be

calculated, modifications to previous methods (Hatch et al. 2011; Terry et al.

2014; Fraser et al. 2018) that are often necessary, and how they compare to

what are known as either projections (Pueschel et al. 2016; Faber et al. 2018;

Whelan et al. 2018, 2019; Pueschel et al. 2019) or cosines of Hermitian angles

(Dong et al. 2019), are provided in Appendix A. Practical details specific

to this system and to Dedalus are discussed in Appendix B. Appendix C

presents how the nonlinear perturbation equations of a given system, here

Eqs. (4.3) and (4.4), are used to derive equations for the time-evolution of

the mode amplitudes given by Eq. (C8). These equations then allow the

propensity for different modes to nonlinearly interact and the role of stable
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modes in instability saturation to be quantified without a direct numerical

simulation of the system (Terry et al. 2006; Makwana et al. 2011; Fraser

et al. 2017). The same methods described in these appendices are also

described in Chapter 6 of Burns (2018), where they are used to study the

dissipation of orbital energy by tidal processes in binary neutron stars due

to nonlinear coupling of p-modes and g-modes.

Section 4.3 described the eigenmodes of the U = tanh(z), Bx = 1

equilibrium about which our nonlinear simulations are perturbed. However,

as the system evolves and turbulent fluctuations influence the structure

of the mean flow 〈U〉 and field 〈Bx〉, the eigenmodes and eigenvalues of

the original equilibrium may become less appropriate. Importantly, the

amplitudes and growth rates of a set of eigenmodes relate to the energy

transfer between fluctuations and the equilibrium about which the modes

are defined (see, e.g., the last paragraph in Sec. III. A. of Makwana et al.

2011). If the mean flow and field differ from their equilibrium profiles,

then while the amplitudes of the eigenmodes of the equilibrium will here

be shown to still serve as a proxy for energy transfer to and from the

mean, an exact relationship requires expanding fluctuations in terms of the

eigenmodes of 〈U〉 and 〈Bx〉. Additionally, the width in z of the eigenmodes,

and hence their corresponding Reynolds and Maxwell stresses, depends
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on the width of the shear layer about which they are calculated (see, for

instance, Chandrasekhar 1961, Sec. 102, Eq. (46)). Thus, the broadening of

the stresses over time in this system, shown in Fig. 4.11, cannot be captured

by stable and unstable modes that do not account for the broadening of the

layer.6 Here we analyze the system in terms of the eigenmodes of the original

equilibrium as well as the eigenmodes of the mean flow and field, obtained

by solving Eqs. (4.5) and (4.6) using 〈U〉 and 〈Bx〉 in place of U and Bx.

Both sets of modes were verified to be valid bases. To distinguish them from

eigenmodes and amplitudes corresponding to the equilibrium, eigenmodes

calculated using 〈U〉 and 〈Bx〉 will be denoted ~f〈j〉, their frequencies and

growth rates ω〈j〉 and γ〈j〉, and their amplitudes β〈j〉. The calculations

presented here were improved by a z-resolution that was greater than what

might otherwise be necessary for well-resolved simulations of this system.

Figure 4.13 shows how the growth rates γ〈j〉 evolve over time for

the most unstable mode at the four initially-unstable wavenumbers for a

simulation with MA = 40, Rm = 500, and the same initial conditions

as Fig. 4.7. Even when the mean flow has hardly evolved in the first

few timesteps in the simulation, the growth rates begin to noticeably

6Note that, as explained in Appendix A, the eigenmodes of both systems are complete. Therefore
the system state, including the broadening of the stresses, is exactly reproduced when the summation in
Eq. (4.12) is taken over all of the modes of either system. But this is merely a result of the completeness
of the two bases, and not a physically meaningful consequence of the modes themselves



166

decline, particularly at the higher wavenumbers. The highest wavenumbers

stabilizing first is consistent with the maximum wavenumber for instability

decreasing from its initial value (here, kx = 1) as the layer broadens in the

hydrodynamic case, see, e.g., Fig. 6 in Hurst et al. (2020). This explains

the earlier end of the linear growth phase for higher wavenumbers that was

noted in Sec. 4.5.2.

As the layer broadens and growth rates decrease, the full spectrum of

eigenvalues at each wavenumber initially remains consistent with the original

spectrum – which is not shown, but is essentially identical to Fig. 2 (a)

in Fraser et al. (2018). Likewise, the general structure in z of ~f〈1〉 and

~f〈2〉 initially resembles ~f1 and ~f2, with the mode broadening as the layer

width increases. However, departures of 〈U〉 from a broadened tanh profile
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Figure 4.13 Growth rate for the eigenmodes of 〈U〉 and 〈B〉 taken from a simulation
with MA = 40, Rm = 500, and the same initial conditions as Fig. 4.7. Different colors
correspond to different wavenumbers. For each wavenumber and at each time, only the
most unstable growth rate is plotted. Even when perturbations are small and the energy
removed from the mean flow appears negligible at early times, the growth rates at higher
kx decline rapidly.
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often introduce new unstable and conjugate stable modes with finite real

frequency. These modes are localized to regions other than the center of

the layer, often localized instead to new inflection points. Changes in 〈Bx〉

appear to separately introduce new modes at times as well, and we note that

Tatsuno & Dorland (2006) have shown how nonuniform magnetic fields can

destabilize shear flows in the absence of inflection points. The modes found

here can form in addition to the existing unstable KH mode, can replace

the KH mode with two conjugate pairs of finite-frequency modes, or can

emerge after the KH modes have already stabilized at that wavenumber,

such as the kx ≥ 0.4 unstable modes that emerge around t ≈ 60 in

Fig. 4.13. Each mode’s complex frequency is well within the bounds of

the modified semicircle theorem derived by Hughes & Tobias (2001). While

these complications could be avoided by replacing the mean flow with a

fitted, broadened tanh profile of the form U = tanh(z/d), the mean flow does

not resemble such a profile. This is demonstrated in the MHD simulations

in Palotti et al. (2008) and Mak et al. (2017) as well as the hydrodynamic

experiments of Gaster et al. (1985) (see their Eqn. (5.2) and Fig. 2), with

Wu & Zhuang (2016) (see their Table 1) showing that these discrepancies

cause significant changes to the eigenmode structure and even the range of

unstable wavenumbers. A detailed investigation of these modes, such as



168

their scaling with different system features, their effects on transport, or

their use in reduced models, is beyond the scope of this work.

Figure 4.14 shows mode amplitudes for the most unstable and conjugate

stable mode for the four initially-unstable wavenumbers for a simulation

with MA = 40 and Rm = 500, calculated using both the modes of the

original equilibrium and of the mean flow at each time. Leading into

saturation, both sets of amplitudes are consistent with expectations in
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Figure 4.14 Mode amplitudes of the most unstable (blue) and conjugate stable (orange)
modes for the same simulation as in Fig. 4.13. Dashed lines are mode amplitudes using a
basis of eigenmodes of perturbations about the mean flow and field, solid lines are using
eigenmodes of perturbations about the initial equilibrium.
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systems where unstable modes nonlinearly drive stable modes (Terry et al.

2006; Makwana et al. 2011; Fraser et al. 2017, 2018), with the stable mode

decaying linearly before being nonlinearly driven while the unstable mode

is still growing linearly. Periods where |β2| appears to grow at the same

rate as |β1|, when it is expected to and eventually does grow faster, can be

attributed to differences between ~fj and the more relevant ~f〈j〉.
7 Instances

where the |β〈2〉| decreases briefly and dramatically before quickly increasing

again can be attributed to a difference in the complex phases of different

terms on the right-hand side of Eq. (C8): when one term overtakes another

and becomes dominant, β2(t) briefly passes through or near 0 in the complex

plane before growing in amplitude.

Figure 4.6 showed that the sign of |β2|2 − |β1|2 at a given wavenumber

corresponds to the sign of the Reynolds stress for that wavenumber, τu(kx),

evaluated at z = 0. Whenever τu(kx) reverses for a given wavenumber and

drives counter-gradient momentum transport, |β2| surpasses |β1| at that

wavenumber. Figure 4.14 shows that this holds for β〈j〉 and βj despite the

concerns regarding the latter described above. Meanwhile, the eigenmodes

7Suppose the true stable mode amplitude in some system evolves as β2(t) = β2(0)e−|γ|t+β2
1(t), and the

unstable mode amplitude as β1(t) = β1(0)e|γ|t (see Terry et al. 2006, Eqns. (22-25)). If a mode that differs

slightly from ~f2 is used to calculate β2(t) from simulation data, then an error of the form εβ1 will almost
always be introduced. This will cause the apparent stable mode amplitude to briefly evolve as β2(t) ∼ εβ1(t)
before the β2(t) ∼ β2

1 term becomes dominant if |ε| & |β1(0)|. If the modes are nonorthogonal under the

inner product used to calculate βj , then ε can become quite large for even small differences in ~f2.
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of the mean flow/field become difficult to interpret once the unstable KH

mode stabilizes or is replaced by multiple finite-frequency modes. While we

have shown that magnetic fields generally bring the quantity |β2|2 − |β1|2

closer to 0, thus far we have not identified whether that occurs by decreasing

both mode amplitudes or by decreasing their ratio. For this reason, Fig. 4.15

shows |β1| and |β2| over time at kx = 0.2 and 0.4 for three different MA.

Generally, decreasing MA causes both mode amplitudes to decrease and also

brings them closer to equipartition.

4.5.5 Approximating fluctuations with truncated eigenmode decompositions

Fraser et al. (2018) studied a driven shear flow and found that the

fluctuating flow and Reynolds stress at the relevant scales could be approxi-
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Figure 4.15 Mode amplitudes |β2| (orange) and |β1| (blue) at kx = 0.2 (left) and 0.4
(right) for MA = 40 (solid), 25 (dashed), and 15 (dotted lines). As MA decreases, both
mode amplitudes are reduced while also trending closer towards equipartition.
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mated by truncating the summation in Eq. (4.12) to simply two eigenmodes

per horizontal wavenumber, where one was the unstable KH mode and the

other its conjugate stable mode. Reduced models for the scaling of momen-

tum transport with the external forcing were constructed using this approx-

imation and were compared to models where only the unstable mode was

considered. In parameter regimes where stable modes reached significant

amplitudes, the models performed significantly better when stable modes

were included; in regimes where stable modes were suppressed relative to

unstable modes, the two models performed equally well. This served as

a useful metric for assessing how stable mode activity varied with system

parameters. Here, we employ the same methods as an additional metric

to demonstrate the reduction of stable mode activity with increasing field

strength.

Figures 4.16-4.18 show, as functions of time, the resulting errors when

the state f̂ at a given kx is approximated by truncating the summation in

Eq. (4.12) to a subset of eigenmodes. Two errors, one for φ and one for ψ,

are calculated according to

errφ =
||φ̂exact − φ̂approx||2KE

||φ̂exact||2KE

, (4.13)
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and

errψ =
||ψ̂exact − ψ̂approx||2ME

||ψ̂exact||2ME

, (4.14)

where ||φ̂||2KE and ||ψ̂||2ME are the kinetic and magnetic energy of a given

φ̂ and ψ̂. Figures 4.16 and 4.17 correspond to the kx = 0.2 and kx = 0.4

fluctuations, respectively, for the simulation in Fig. 4.14, while Fig. 4.18

corresponds to kx = 0.2 fluctuations in an identical simulation but with

MA = 7.5. In each figure, approximations using both ~fj and ~f〈j〉 are com-

pared. When quasilinear flattening stabilizes modes at a given wavenumber,

approximations built using eigenmodes of the mean flow and field become

unreliable. However, even when quasilinear flattening has set in, approxima-
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Figure 4.16 Error over time for approximations of the flow (left) and field (right) at
kx = 0.2 using a truncated eigenmode expansion for a simulation with MA = 40 and
Rm = 500. Black and grey curves use βj and ~fj, while other curves use β〈j〉 and ~f〈j〉. The
horizontal dashed line indicates an error of 1. Flow fluctuations are well-described when
stable modes are included, with β〈j〉, ~f〈j〉 models performing better than the βj, ~fj ones.
Each approximation describes magnetic fluctuations poorly.
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tions using eigenmodes of the initial equilibrium retain some fidelity. Before

quasilinear flattening stabilizes modes, the ~f〈j〉 modes generally describe

fluctuations better. This is expected given that they reflect the broaden-

ing of the layer with time, which was shown in plots of τu in Sec. 4.5.3 to

cause the fluctuations to broaden as well. For higher MA, including the con-

jugate stable mode in the expansion significantly reduces the error in the

approximated flow, particularly when counter-gradient momentum trans-

port occurs. This further demonstrates the significance of the stable mode

activity in these systems. At lower MA, including the conjugate stable mode

in the expansion makes comparatively less of a difference in the error, re-

flecting that stable modes have less of an impact when the magnetic field is

strong. For all cases explored, these approximations have very little success

in describing the field fluctuation. This may indicate that the flow at these

scales is dominated more by interactions with the mean flow and stable and

unstable modes at large scales, while the field is dominated by more complex

interactions.

4.6 Conclusions

In turbuence driven by unstable, freely-evolving shear layers in MHD,

the addition of a magnetic field has been observed to enhance energy

transfer to small scales and increase turbulent momentum transport (Palotti
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Figure 4.17 Identical to Fig. 4.16, but the kx = 0.4 fluctuations are approximated. Unlike
the kx = 0.2 fluctuations, here the ~fj modes describe the system well for significantly longer

than the ~f〈j〉 modes, except near t ≈ 20. This is to be expected as γ〈j〉 approaches 0 much
sooner at this kx.
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Figure 4.18 Identical to Fig. 4.16, but for MA = 7.5. Here, including the stable mode
makes less of an improvement to the approximations, consistent with them playing less of
a role in the dynamics at lower MA.
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et al. 2008; Mak et al. 2017) despite stabilizing the driving instability

(Chandrasekhar 1961). Here, we have investigated the role of large-scale,

dissipationless stable modes in this system in an effort to identify a cause for

these trends. In the MHD system, as in other systems where dissipationless

stable modes have been investigated (Fraser et al. 2017, 2018), these modes

transfer energy from large-scale fluctuations back to the driving momentum

gradient when they are significantly excited. This shrinks the shear layer and

reduces the energy in fluctuations that might otherwise cascade to smaller

scales. Thus, one might expect that the enhanced transfer to small scales

and increased broadening rate with stronger magnetic fields is consistent

with less stable mode activity. We have shown this to be the case.

In Fraser et al. (2018), changes in stable mode activity with an added

damping term could be predicted based on how the damping affected the

eigenvalues. Here, changes in stable mode activity as equilibrium field

strength is varied cannot be predicted from changes in eigenvalues alone.

This is due to the magnetic field preserving the conjugate symmetry between

stable and unstable modes such that stable modes have damping rates

exactly equal to the growth rates of unstable modes at the same scales.

Instead, to demonstrate that the observed trends can be understood in

terms of these modes, we rely on post-processing analyses of direct numerical
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simulations of the system. We use these analyses to track the amplitudes

of stable and unstable modes through the evolving turbulence, finding that

stable mode activity becomes less prominent at stronger fields. This is

demonstrated first by identifying the relationship between Reynolds stress

and the relative excitation of stable and unstable modes, allowing Reynolds

stress to serve as a proxy for stable mode activity. As field strength

increases, the momentum transport corresponding to stable mode activity

becomes less prominent for two reasons. At some times, particularly later

in the simulation when the field has amplified, this is partly because the

counter-gradient Reynolds stress caused by stable modes becomes weaker.

At other times, it is entirely because the down-gradient Maxwell stress due

to small-scale magnetic fluctuations becomes stronger with stronger fields.

As an additional means to demonstrate this trend in stable mode activity,

turbulent fluctuations are approximated using combinations of stable and

unstable modes, then compared to approximations in terms of unstable

modes alone. In the same regimes where stable modes are seen to be

less prominent, their inclusion in these approximations provides less of an

improvement. In performing these analyses, we have found that the same

eigenmode decompositions used in systems with a fixed or otherwise quasi-

stationary unstable profile driving the turbulence are also effective in this
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system, where the mean flow that drives instability changes in time.

Simulations with a sufficiently weak magnetic field appear to evolve

nearly hydrodynamically provided that Rm is not sufficiently large to permit

significant field amplification. However, even for very weak magnetic fields,

the reduction in stable mode activity relative to the hydrodynamic case

leads to more energy cascading to small scales, especially in the form of

magnetic fluctuations. This drives an increase in resistive dissipation that

generally exceeds the viscous dissipation in the hydrodynamic case, with

this dissipation increasing with Rm for the small range of values studied

here. Viscous dissipation increases with field strength as well, provided

the field is stronger than some threshold that depends on Rm. Thus, even

in the presence of a magnetic field much too weak to significantly affect

the linear instability, free shear layers in MHD seem to dissipate energy

much faster than the hydrodynamic counterpart, with the reduction of stable

mode activity providing an underlying explanation.

A Constructing a basis with the linear modes

Here we describe how the the eigenmodes obtained from solving

Eqs. (4.5) and (4.6) are used to form a basis for a vector space, and how

their amplitudes are tracked over time in nonlinear simulations of Eqs. (4.1)

and (4.2).
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First, just as the notation ~fj was introduced in Sec. 4.2.2 out of

convenience to represent an entire eigenmode, including both its φ and ψ

components, we rewrite Eqs. (4.5) and (4.6) as

iωM̂[f̂ ] = L̂[f̂ ], (A1)

where M̂ and L̂ are 2 × 2 matrices representing the coefficients and linear

differential operators acting on φ̂ and ψ̂ in Eqs. (4.5) and (4.6), and

f̂ ≡ (φ̂, ψ̂). Hats over quantities are meant to indicate that they correspond

to the Fourier-transformed (in x) system, but the hat is suppressed when

referring to eigenmodes ~fj. The matrix M̂ being different from simply the

identity operator makes this system a generalized eigenvalue problem, unlike

the linearized equations considered in Hatch et al. (2011), Terry et al. (2014),

and Fraser et al. (2018), and thus requires modifications to the methods

employed in those papers for calculating mode amplitudes.

At a given kx, suppose the eigenmodes ~fj of Eq. (A1) form a complete

basis in the sense that for any state f̂ , the component corresponding to that

kx can be expressed as a linear combination of eigenmodes of the form

f̂(kx, z) =
∑

j

βj(kx)~fj(kx, z), (A2)

where βj is the amplitude of mode f̂j, and can be thought of as a coordinate

in the eigenmode basis. We verify that the eigenmodes in our numerical
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calculations are complete by checking that they are linearly independent and

that the number of eigenmodes returned by the solver, including those on

the continuum of marginally stable modes (Case 1960), matches the degrees

of freedom (product of the z resolution and the number of fields). In finite-

dimensional systems such as the numerically-discretized system here, this

implies that, for any given f̂ , the amplitudes βj in Eq. (A2) are unique. Note

that these notions of completeness, linear independence, and uniqueness

are all well-defined without needing to introduce an inner product (Axler

1997). Hence, while the eigenmodes ~fj in the system considered here are

certainly non-orthogonal under standard choices of inner product, the mode

amplitudes βj are well-defined and unique. Furthermore, while we do use

an inner product, as described below, to calculate the mode amplitudes in

practice – and the eigenmodes are indeed non-orthogonal under this inner

product – the resulting mode amplitudes are independent of the choice of

inner product used. This is one benefit of considering mode amplitudes in

favor of what are called projections in recent gyrokinetic studies (Pueschel

et al. 2016; Faber et al. 2018; Whelan et al. 2018, 2019; Pueschel et al.

2019), and have also been employed in at least one recent hydrodynamic

study (Dong et al. 2019), where they were identified as the cosines of the

familiar Hermitian angles (see brief review by Scharnhorst 2001) between
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the state vector and the eigenvectors. The Hermitian angles are often more

straightforward to calculate in practice,8 and have intuitive interpretations

when the cosine is 0 or 1 (e.g. their usage in Dong et al. (2019)), but

they depend on the choice of inner product. While mode amplitudes are

sometimes less straightforward to calculate in practice, they can directly

inform reduced models when some nonlinear interactions can be neglected

in favor of others (Terry et al. 2009, 2018; Hegna et al. 2018) or when the

system state is well-described by a severe truncation of the set of eigenmodes

(Fraser et al. 2018). Furthermore, equations for their time-evolution can be

directly constructed from the original equations governing the system (Terry

et al. 2006; Makwana et al. 2011; Fraser et al. 2017) by a change of basis

from the dynamical fields to the eigenmodes. Note that if the eigenmodes

are mutually orthonormal under some inner product, then the cosine of the

hermitian angle and the mode amplitudes are equivalent up to a factor of

the norm (induced by that inner product) of the state vector.

Calculating the mode amplitudes of a given state from a nonlinear

simulation can be done by constructing a set of modes {~gi} that, with

the eigenmodes {~fj}, form a biorthogonal system under some chosen inner

8Indeed, at the time of this writing, potentially-significant code development would be necessary to
calculate the amplitudes of eigenmodes obtained with the iterative eigenvalue solvers employed by the
Gene code. These iterative solvers are often necessary given the massive matrices encountered in fully
5D gyrokinetic calculations. Iterative solvers were not necessary in Fraser et al. (2018) because only two
spatial dimensions were considered.
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product 〈·, ·〉 such that 〈~gi, ~fj〉 = δi,j, where δi,j is the Kronecker delta. Once

this so-called dual basis {~gi} is obtained, the mode amplitudes βj in Eq. (A2)

can be calculated according to βj = 〈~gi, f̂〉. In previous work (Hatch et al.

2011; Terry et al. 2014; Fraser et al. 2018), the linearized equations were

analogous to Eq. (A1), but M̂ was simply the identity operator, so that the

linearized system was an ordinary eigenvalue problem, i.e., L̂[~fj] = iωj ~fj,

rather than a generalized eigenvalue problem. For ordinary eigenvalue

problems in finite-dimensional vector spaces, if L̂ is diagonalizable, then

the dual basis {~gi} is given by the eigenmodes of L̂†, which we denote as

~gi = ~f †i . Here L̂† is the Hermitian adjoint of L̂ with respect to some inner

product 〈·, ·〉.9 Note that the notion of Hermitian adjoint requires selecting

an inner product, which is then the inner product under which {f †i } and {fj}

form a biorthogonal system. If L̂ is an N × N matrix rather than a linear

differential operator, as is the case when doing numerical calculations with

finite resolution, then the left and right eigenvectors of L̂ form a biorthogonal

system under the usual complex dot product. This was used to calculate

the mode amplitudes in Hatch et al. (2011), Terry et al. (2014), and Fraser

et al. (2017).

When dealing with a generalized eigenvalue problem, as in Eq. (A1), it

9If L̂ is self-adjoint, i.e., L̂† = L̂, then ~f†j = ~fj and the eigenmodes, properly normalized, form an

orthonormal basis so that the mode amplitudes can be calculated in the more familiary way: βj = 〈~fj , f̂〉.
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can be shown that the eigenmodes ~f †i of the adjoint system

L̂†[~f †i ] = −iω∗iM̂†[~f †i ] (A3)

satisfy a modified form of biorthogonality, namely 〈~f †i ,M̂[~fj]〉 = δi,j, or,

equivalently,

〈M̂†[~f †i ], ~fj〉 = δi,j. (A4)

This provides our dual basis {~gi} that can be used to calculate the mode

amplitudes: for any state f̂ given by Eq. (A2), the mode amplitudes can be

calculated using

βj = 〈M̂†[~f †i ], f̂〉. (A5)

The mode amplitudes discussed in Sec. 4.5.4 were calculated using this

expression. Note that the normalization of the eigenmodes affects the

resulting mode amplitudes. In this work, all eigenmodes are normalized

to have unit total energy, so that if a state is given by Eq. (A2) where only

a single βj is nonzero, then the energy of the state is by |βj|2. Additional

details particular to this system and the Dedalus code are described in

Appendix B

B Details of inner product used in this work

Every eigenmode we use in this work is obtained from a finite Cheby-

shev series representation of the ideal system Eqs. (4.5) and (4.6). Thus, all
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linear operators and modes become finite-dimensional matrices and vectors,

with entries given by their Chebyshev series expansion coefficients for each

of the fields. In this work, the inner product 〈·, ·〉 that is used for adjoints

and mode amplitudes is the ordinary complex dot product in terms of these

Chebyshev series coefficients for each field. As a result of Dedalus only solv-

ing formally first-order differential systems of equations, the fields relevant

to the present system, for example, are not just φ and ψ, but also their

derivatives in z. The summation over the Chebyshev series coefficients for

this inner product includes a summation over each of these fields as well.

While this is not a physically motivated inner product, such as an energy-

based inner product, it is practically convenient. Under this inner product,

the matrix of some operator’s Hermitian adjoint is simply the conjugate

transpose of the original matrix. Thus, calculating left eigenvectors with

Dedalus, which requires replacing the eigenvalue problem Eq. (A1) with its

adjoint Eq. (A3), is easily done by modifying the code to apply conjugate

transposes to the matrices M̂ and L̂ before they are passed to the underlying

linear algebra packages.

C Nonlinear coupling of linear modes

Using the biorthogonality relation Eq. (A4) provides mode amplitudes

from a given system state according to Eq. (A5), which was used to calculate
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mode amplitudes from nonlinear simulations in this work. If, instead of

the state f̂ , an appropriate inner product with the governing equations is

considered, one obtains the governing equations in the eigenmode basis.

In Appendix A, the linearized system Eqs. (4.5) and (4.6) was written

in a generic form given by Eq. (A1). Here, we similarly consider a generic

form of the nonlinear equations for the perturbations, Eqs. (4.3) and (4.4),

given by

∂

∂t
~M[~f ] = ~L[~f ] + ~N [~f, ~f ], (C6)

where ~N is a bilinear operator.

For systems of this form, taking the inner product of the equations with

~f †j on the left yields

∂

∂t
βj = iωjβj + 〈~f †j , ~N [~f, ~f ]〉, (C7)

which can be compared to Eq. (9) in Terry et al. (2006) or Eq. (16) in Fraser

et al. (2017).10 Expanding each ~f in the nonlinearity according to Eq. (A2)

allows this to be rewritten as

∂

∂t
βj = iωjβj +

∑

m,n

〈~f †j , ~N [~fm, ~fn]〉βmβn. (C8)

10Some abuse of notation is committed here for the sake of brevity. The methods described in Appendix
A were considered in the context of separate kx in systems that had been Fourier transformed. Thus,
either each of the equations in this Appendix should be replaced by their Fourier transforms, which would
introduce cumbersome notation as the nonlinearities become convolutions and N̂ would then depend on
kx and k′x, or the subscript j must be understood to enumerate the eigenmodes at all wavenumbers and
the inner product understood to include an integral in x. These details do not aid the discussion and are
left out.
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This is equivalent to Eqs. (4.3) and (4.4), but expressed in terms of

eigenmode amplitudes βj rather than the physical fields φ and ψ. The second

term on the right-hand side describes three-mode nonlinear interactions,

specifically how mode j is influenced by nonlinear interactions with modes

m and n, and can be understood as the same nonlinearities in Eqs. (4.3) and

(4.4) written in the eigenmode basis.11 The complex numbers 〈~f †j , ~N [~fm, ~fn]〉

are called nonlinear coupling coefficients, and have been calculated by

different means in previous work on stable modes in instability-driven

turbulence (Terry et al. 2006; Makwana et al. 2011) as well as an unstable

shear flow (Fraser et al. 2017). Others have derived them in Dedalus using

the same methods as what is presented here in order to study nonlinear

coupling of p- and g-modes in binary neutron stars Burns (2018). If these

coefficients are nonzero for couplings involving two unstable modes and a

stable mode, then the stable mode is nonlinearly driven by unstable modes

despite its negative linear growth rate.

The remainder of this appendix presents calculations of these coupling

coefficients and demonstrates their use for the system at hand. We calculate

11Note that the derivation of Eq. (C8) implicitly assumes that ~fj and ~f†j are independent of time. If

they do vary with time, then additional linear terms that are off-diagonal appear in Eq. (C8), just like the
terms proportional to the time derivative of the Hamiltonian that appear when considering adiabatically-
changing potentials in quantum mechanics (see e.g. Sakurai & Napolitano 2017, Eqn. (5.6.10)). This can be
shown by following standard textbook methods for analyzing adiabatically-changing potentials, with care
taken to respect that the linearized system here is a generalized eigenvalue problem and is not self-adjoint.
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for a range of different MA the nonlinear coupling coefficients that involve

various combinations of unstable and stable modes. These are then used

to calculate the threshold parameter Pt (described below) to assess whether

nonlinearities involving both stable and unstable modes play a significant

role in saturating the linear instability relative to nonlinearities involving

unstable modes alone, and how this assessment varies with MA. We include

these results here as a demonstration of how the method above can be

employed and because the results are consistent with the trends observed in

nonlinear simulations. However, there remain subtle details in the results

suggesting a small possibility that a minor error exists in the numerical

implementation of the methods described here. These potential errors could

not be fully resolved in time for submission of this thesis. The results

are included nonetheless for the reasons described above, but the reader

is cautioned to note these potential errors.

After obtaining appropriate left and right eigenvectors with Dedalus,

the vector ~N [~fm, ~fn] is constructed by inserting two right eigenvectors into

the nonlinearities in Eqs. (4.3) and (4.4). Here, each vector includes a variety

of fields as its components (see Appendix B), and care is taken to insert the

appropriate fields into the nonlinearities, and to map these nonlinearities

onto the appropriate field components of the vector ~N . Because the
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nonlinearities in the original equations are only present in the equations for

∂t∇2φ and ∂tψ, only those components of the vector ~N are nonzero. The

equation for, e.g., ∂zφ that is input into Dedalus is φz ≡ ∂zφ, which contains

no nonlinearities, and thus the φz component of ~N is zero. The nonlinear

coupling coefficients are then computed by taking the inner product shown

in Eq. (C8). In the present system, the wavenumbers kx for the modes

~f †j , ~fm, and ~fn are kx, k
′
x, and k′′x ≡ kx − k′x respectively to satisfy the

wavenumber matching condition, where each of these is nonzero. Just as

an eigenvector’s normalization affects the resulting mode amplitudes, it also

affects the coupling coefficients. Here eigenvectors are normalized to have

unit total energy.

Following the notation of Makwana et al. (2011) and Fraser et al.

(2017), we write the nonlinear coupling coefficients involving only unstable

and stable modes as Cm(kx, k
′
x) if they enter into the equation for ∂tβ1(kx)

and Dm(kx, k
′
x) if they enter into the equation for ∂tβ2(kx), where m = 1

indicates a coupling to two unstable modes at k′x and k − k′x, m = 2 and 3

a coupling to one stable and one unstable mode, and m = 4 a coupling to

two stable modes. A sampling of these coupling coefficients for MA = 40

and MA = 15 are shown in Fig. 4.19. From this figure alone, it is not clear

what to make of the observed changes with MA. An increase in |C1| with MA
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alone might not imply that couplings involving only unstable modes become

more important if the other coefficients increase with MA as well. For this

reason, these coefficients are used to calculate the threshold parameter Pt.

For a derivation and detailed discussion of Pt see Terry et al. (2006).

The parameter was similarly evaluated in Makwana et al. (2011). Here, Pt

is calculated using the modified definition described in Fraser et al. (2017).

We calculate the ratio

Pt =

[
max |2C2β1(k

′
x)β2(k

′′
x)|

max |C1β1(k′x)β1(k′′x)|

]

t=ts

, (C9)

where unstable modes are assumed to grow linearly, stable modes are as-
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Figure 4.19 Coupling coefficients between stable and unstable modes for the equilibrium
studied here. Top row corresponds to MA = 40, bottom row to MA = 15. In the notation of
Eq. (C8), columns are, from left to right, 〈~f †1 , ~N [~f1, ~f1]〉, 〈~f †1 , ~N [~f1, ~f2]〉, and 〈~f †2 , ~N [~f1, ~f1]〉.
Data provided courtesy of J.M. Schroeder.
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sumed to decay before being nonlinearly pumped as given by the parametric

instability approximation (see Fraser et al. 2017, Eq. (21)), and ts is the sat-

uration time, defined here as the time at which the nonlinearity reaches the

linear term in Eq. (C8) for the most unstable mode. The maximums taken

in Eq. (C9) are over different values of k′x, where kx corresponds to the most

unstable wavenumber. Unlike previous work, here the initial eigenmode

amplitudes and complex phases are varied with kx in the same fashion as

the initial conditions of the nonlinear simulations in this chapter. This is

done to ensure that trends in Pt with MA are robust to different initial

conditions. In calculating Pt, wavenumbers above kx = 0.83 are neglected.

As kx approaches 1, numerical convergence becomes a challenge when cal-

culating the eigenmodes. Even if growth rates are sufficiently converged,

the coupling coefficients involve a product of three eigenmodes and Pt relies

on multiple coupling coefficients. Thus, Pt is extremely sensitive to small

errors in mode structures. Neglecting these wavenumbers is justified by

their minimal energy content and contribution to saturation as observed in

simulations. With these wavenumbers neglected, Pt is well-converged for

Nz = 4096, which still allows for reasonable computation times using the

sparse eigenvalue routines in Dedalus.

Results are shown in Fig. 4.20, where each curve represents a different
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set of pseudo-random complex phases for the initial condition. Evidently Pt

grows with increasing MA for a variety of initial conditions. This is broadly

consistent with the simulation results presented in this chapter, where

stable modes are shown to dominate more at higher MA. By comparing

calculations of Pt to direct numerical simulations of a variety of systems,

Makwana et al. (2011) found that Pt & 0.3 implies stable modes are

important contributors to instability saturation. Thus Fig. 4.20 appears

to imply that stable modes are extremly important at all MA. However, as

discussed in Fraser et al. (2017), many of the assumptions built into this

calculation become less valid if |β2| reaches amplitudes comparable to |β1|,

which indeed occurs for a broad range of MA as shown in Fig. 4.15.
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Chapter 5

Summary and Conclusions
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5.1 Summary and conclusions

Shear flows are ubiquitous in physical systems, including several astro-

physical examples. Understanding and predicting how shear-driven turbu-

lence modifies the transport of heat, particles, and momentum across the

flow is important to understanding how shear flows affect the evolution of

systems where they are found. The work presented in this thesis has devel-

oped and employed a combination of analytical and numerical methods to

probe how basic shear-flow instabilities saturate. Specifically, the role that

large-scale stable (damped) eigenmodes play in saturation of the instability

and their excitation in shear-flow-driven turbulence were investigated, and

their utility in constructing reduced transport models was explored. Three

separate studies were performed, each involving a different flow profile and

including different physical effects. Despite these differences, each study

found that stable modes are generally excited to the point that they af-

fect instability saturation, can influence turbulent transport, and properly

accounting for them can improve reduced models.

The nonlinear coupling between large-scale stable and unstable eigen-

modes appears to be a fundamental aspect of KH-unstable flows. I describe

it as fundamental because, while details unique to a given system may pro-
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duce parameter regimes where their excitation is weak, they are present in

any basic KH-unstable system. Indeed, their existence results from simple

symmetries of the underlying equations (Qin et al. 2019; Zhang et al. 2020).

Even when symmetry-breaking terms such as dissipation may appear to

preclude their existence, separating the equations into dissipationless and

dissipative components allows their role to be uncovered nonetheless, as was

done in Chapters 3 and 4.1 Barring their suppression, stable modes trans-

port momentum up the equilibrium flow gradient and transfer energy back

to the unstable flow. While this transfer of energy is conservative in the

simulations presented here (unlike the important nonconservative damping

that stable modes provide in other systems, e.g. Terry et al. 2006), it still

affects the manner in which the instability saturates and the structure of the

ensuing turbulence. Furthermore, understanding the dynamics in terms of

these modes provides a useful framework for explaining trends with system

parameters.

This framework is not only useful for qualitative understanding, but was

shown here to directly inform quantitative reduced models. In the context

of plasma turbulence driven by drift-wave instabilities, a variety of reduced

1Furthermore, this separation allows their stability to be fully attributed to conservative energy transfer
to the equilibrium. Stable modes investigated without this separation will include dissipative contributions
to their linear dynamics.
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models incorporating stable mode physics have been constructed (e.g. Terry

et al. 2018; Hegna et al. 2018; Whelan et al. 2018). These range from mixing-

length-like scaling relations to detailed statistical closure theories. These

models have come after roughly two decades of work studying stable modes

in drift-wave turbulence. Unlike the drift-wave case, the models presented in

this thesis were not closed, and were thus incomplete. Mode amplitudes were

inserted from simulations rather than calculated analytically. However, this

thesis presents only the first three steps towards understanding the role of

stable modes in shear-driven turbulence. After one or two decades of further

study, I fully expect models similar to recent drift-wave turbulence theories

to be possible here as well. The results presented here clearly indicate that

such models merit investigation.

A final aspect of this work that bears highlighting is its relation to the

large body of existing work on stable modes. The continued investigation

of stable modes in local plasma turbulence has shown their excitation to

be an almost universal aspect of these systems (e.g. Makwana et al. 2011).

However, previous work had not considered non-local systems that do not

lend themselves to assumptions of quasi-homogeneity. The KH instability is

fundamentally non-local in the sense that uniform shear alone is insufficient

to drive instability, and, in the shear layer problem, eigenmodes extend
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on either side of the layer. Although this work only touched on the KH

instability, demonstrating the importance of stable modes in these systems

establishes that they are not limited to local systems alone. This motivates

future work investigating their potential role in other instabilities including

magnetorotational, Rayleigh-Taylor, Raleigh-Benard, or tearing modes, to

name just a few examples. Wherever possible, the notation and methods

presented in the appendices of Chapter 4 were generalized so that future

studies in other systems can employ these same methods.

5.2 Future work

Several different future directions are motivated by or related to the

work presented in this thesis. Here I briefly describe three of them, two of

which are already underway by others, and one that I recently submitted as

a postdoctoral fellowship proposal.

Stable modes in driven shear flows in MHD

The one that is most directly related is currently underway by a new

PhD student. Comparing Chapters 3 and 4 of this thesis, the presence or

absence of a flow-aligned magnetic field and the inclusion or lack of forcing

were two significant differences between the systems. Some of the results,

including the difficulty in describing magnetic fluctuations in Chapter 4,
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could not be clearly attributed to the magnetic field or to lack of forcing.

Similarly, it is unclear whether the reduction in stable mode activity with

stronger magnetic fields is simply due to the enhanced layer broadening

rate causing unstable modes to stabilize more quickly, thus reducing the

time over which they nonlinearly drive stable modes. It is plausible that

the trends with field strength would change significantly if the layer were

maintained by a forcing similar to the one considered in Chapter 3, so that

instability persists and a quasi-stationary state of driven turbulence ensues.

A quasi-stationary state would also enable a more direct comparison to the

eddy viscosity model presented in Parker & Constantinou (2019), and thus

may enable a momentum transport model in which the Reynolds stress is

described by stable and unstable modes while the Maxwell stress is described

by a magnetic eddy viscosity.

Stable mode effects in unstable currect sheets

In Williams (2019) (see Fig. 7.1 and surrounding discussion), a collision-

less tearing instability was shown in the gyrokinetic framework to exhibit

a conjugate stable mode similar to the stable modes studied here. Explicit

resistivity can be shown to break any potential conjugate symmetry in a

resistive MHD framework, thus precluding the existence of a lone stable
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mode at large scales. However, the methods presented here can still be

employed in the collisionless gyrokinetic case to study the conjugate sta-

ble mode. Alternatively, thanks to the flexibility of the Dedalus code, the

same analyses applied to the KH system in Chapter 4 can be applied to

fluid models of unstable current sheets. While the conjugate stable mode is

not explicitly a part of the spectrum if resistivity is included, stable mode

effects can still be investigated by proxy similar to the proxies motivated

in Chapter 4. Alternatively, each of the large number of resistive stable

modes found at large scales (see MacTaggart 2018, Fig. 1) can be inspected

directly. By calculating their contributions to the energy in arbitrary per-

turbations, their conservative energy transfer to the mean can be separated

from their nonconservative dissipation, similar to the different contributions

to the Reynolds-Orr energy equation (see Drazin 2002, Sec. 5.3).

Understanding the turbulent interiors of stars: shear-flow insta-

bilities and stable modes

Based on surface observation and asteroseismic inferences, radiation

zones in stars across the Hertzsprung-Russel (HR) diagram are known to

exhibit additional mixing of chemical composition and angular momentum

beyond what is predicted by standard stellar models. I proposed to explore
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these “missing mixing” problems and identify whether improved models of

shear-driven turbulent transport can alleviate them. In the near future, I

hope to study turbulence driven by stratified shear flows with and without

magnetic fields in order to construct reduced models of turbulent transport.

These models would be tested in parameter regimes (e.g. values of viscosity

and diffusivity) that are accessible to simulations, then extrapolated to

parameter regimes more relevant to stellar interiors.

This research would build on the work presented in this thesis on

unstratified fluids and plasmas. Under the Boussinesq approximation,

which is appropriate for stellar interiors (Spiegel & Veronis 1960), the

conjugate symmetry between stable and unstable modes is preserved even

with density stratification included (Chandrasekhar 1961). Thus, while

significant coupling between the two modes in the stratified case remains to

be demonstrated, one would expect that the unstratified case is approached

in the limit of weak stratification, similar to the weak-field case exhibiting

similar behavior to the hydrodynamic case in Chapter 4. Under the proposed

research, parameter regimes where stable modes are or are not important

would be distinguished using direct numerical simulations. The ability for

the threshold parameter Pt to predict the importance of stable modes would

be explored, with Pt calculated either using the methods of Chapter 2 or
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Chapter 4. If Pt provides a valuable predictor, then it could be used in

stellar evolution codes as a quick assessment at each timestep to determine

whether existing turbulent transport models should be used (if stable modes

are predicted to be unimportant at that time) or if they should be replaced

with models that account for stable modes (if they are predicted to be

important at that time). Thus, this work has the potential to yield simple

improvements to stellar evolution codes that can then be tested to see

whether improved models alleviate the missing mixing problems.
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