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We study the dynamics of salt fingers in the regime of slow salinity diffusion (small inverse9
Lewis number) and strong stratification (large density ratio), focusing on regimes relevant to10
Earth’s oceans. Using three-dimensional direct numerical simulations in periodic domains,11
we show that salt fingers exhibit rich, multiscale dynamics in this regime, with vertically12
elongated fingers that are twisted into helical shapes at large scales by mean flows and13
disrupted at small scales by isotropic eddies. We use a multiscale asymptotic analysis to14
motivate a reduced set of partial differential equations that filters internal gravity waves and15
removes inertia from all parts of the momentum equation except for the Reynolds stress16
that drives the helical mean flow. When simulated numerically, the reduced equations17
capture the same dynamics and fluxes as the full equations in the appropriate regime. The18
reduced equations enforce zero helicity in all fluctuations about the mean flow, implying19
that the symmetry-breaking helical flow is spontaneously generated by strictly non-helical20
fluctuations.21

1. Introduction22

The salt-finger instability occurs in stably stratified fluid layers with background temper-23
ature and salinity that both increase with height, and a sufficiently small ratio of salinity24
diffusivity 𝜅𝑆 to thermal diffusivity 𝜅𝑇 . This instability drives significant turbulent mixing25
and a broad range of dynamics in the ocean (Radko 2013), where this diffusivity ratio—the26
inverse Lewis number—is quite small: 𝜏 ≡ 𝜅𝑆/𝜅𝑇 ≈ 10−2.27

In stably stratified systems where heat is the sole contributor to buoyancy, large thermal28
diffusivity has been leveraged to derive asymptotically reduced sets of PDEs valid in the29
so-called “low-Péclet number" (LPN) limit (Lignières 1999; Garaud 2021), where the30
buoyancy equation reduces to a diagnostic balance between advection of the background31
temperature gradient and diffusion of thermal fluctuations. Given that rapid thermal32
diffusion is fundamental to the salt-finger instability, one might naturally expect similar33
asymptotic reductions to be applicable. Indeed, Prat et al. (2015) explored the LPN limit34
for salt fingers in astrophysical regimes (cf. Knobloch & Spruit 1982), where both 𝜏 and35
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the ratio of viscous to thermal diffusion, the Prandtl number 𝑃𝑟 ≡ 𝜈/𝜅𝑇 , are extremely36
small (𝑃𝑟, 𝜏 ∼ 10−6; Garaud 2018). They found that the LPN limit reproduces the same37
turbulent fluxes as the full equations in the appropriate limit. The limit of fast thermal38
diffusion was also studied, albeit in 2D, by Xie et al. (2017), who showed, in addition,39
that in the oceanographic regime of 𝑃𝑟 ≳ 𝑂 (1), the momentum equation reduces to a40
diagnostic balance involving buoyancy and viscosity. In this regime, the evolution is driven41
by the salinity field alone, with subdominant inertial terms, resulting in inertia-free salt42
convection (IFSC).43

The reductions offered by these limits simplify both numerical and analytical com-44
putations while excluding presumably irrelevant dynamics in their respective regimes of45
validity. For instance, in the LPN limit internal gravity waves are overdamped, and thus46
a large buoyancy frequency no longer constrains the simulation time step in this limit.47
However, the regions in parameter space where the excluded dynamics remain important48
are not always clear a priori. The spontaneous formation of thermohaline staircases and49
the large-scale, secondary instabilities that often precede them (e.g., the collective and50
gamma instabilities, see Radko 2003; Traxler et al. 2011) are excluded in the LPN limit,51
but these can still occur when 𝜏 and/or 𝑃𝑟 are extremely small, provided the system is52
not too strongly stratified (Garaud 2018). Thus, one expects the LPN and IFSC limits to53
faithfully capture the dynamics of salt fingers provided 𝜏 and/or 𝑃𝑟 are sufficiently small54
and the density stratification is sufficiently large.55

With these uncertainties in mind, we extend here the work of Xie et al. (2017) to56
three dimensions, performing a suite of direct numerical simulations (DNS) of both the57
primitive and IFSC equations at 𝜏 = 0.05 and 𝑃𝑟 = 5 with varying degrees of stratification,58
focusing on the limit of strong stratification (weak instability). We find that this regime is59
characterized by remarkably rich, multiscale dynamics that the IFSC limit fails to recover60
except in cases with very weak instability. Motivated by the simulation results, we consider61
a multiscale asymptotic expansion of our system, which points to a natural modification of62
the IFSC model of Xie et al. (2017). This modified IFSC (MIFSC) model reproduces the63
dynamics seen in simulations of the full equations for much weaker stratification (stronger64
instability) and suggests how the fields and fluxes might scale with stratification, which we65
show to be broadly consistent with the simulations.66

2. Numerical method67

We are interested in the dynamics of salt fingers in the simultaneous limits of fast thermal
diffusion and weak or moderate instability. We consider fluctuations atop linear background
profiles of salinity and potential temperature in the vertical with constant slopes 𝛽𝑆 and
𝛽𝑇 , respectively. We assume the flows are slow enough and the layer height small enough
to permit the use of the Boussinesq approximation. In this limit, the standard control
parameters include the Prandtl number 𝑃𝑟 ≡ 𝜈/𝜅𝑇 , the inverse Lewis number 𝜏 ≡ 𝜅𝑆/𝜅𝑇 ,
and the density ratio 𝑅𝜌 ≡ 𝛼𝑇 𝛽𝑇/(𝛼𝑆𝛽𝑆) with 𝛼𝑇 > 0, 𝛼𝑆 > 0 the respective coefficients
of expansion. We consider periodic boundary conditions in all directions, in which case
our system is linearly unstable to the salt-finger instability for 1 < 𝑅𝜌 < 𝜏−1 (Baines &
Gill 1969), with 𝑅𝜌 = 𝜏−1 corresponding to marginal diffusive stability and 𝑅𝜌 < 1 to an
unstably stratified background and hence dynamical instability. In the regime of interest
here, it is helpful to introduce the following control parameters:

𝑅𝑎 =
𝛼𝑆𝛽𝑆𝜅𝑇

𝛼𝑇 𝛽𝑇 𝜅𝑆
=

1
𝑅𝜌𝜏

, R ≡ 𝑅𝑎 − 1 and 𝑆𝑐 ≡ 𝜈

𝜅𝑆
=

𝑃𝑟

𝜏
, (2.1)
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where 𝑅𝑎 is the Rayleigh ratio (with marginal stability now at 𝑅𝑎 = 1), R is a measure68
of supercriticality and 𝑆𝑐 is the Schmidt number. In all results presented below, we fix69
𝑃𝑟 = 5, 𝜏 = 0.05 and thus 𝑆𝑐 = 100.70

We follow Sec. 3.1 of Xie et al. (2017) in our choice of nondimensionalization, taking the
characteristic finger width 𝑑 = (𝜅𝑇𝜈/𝑔𝛼𝑇 𝛽𝑇 )1/4 (with gravitational acceleration 𝑔) as the
length scale and the salinity diffusion time 𝑑2/𝜅𝑆 as the timescale. As our temperature scale,
we take the background temperature difference across a height 𝑑 rescaled by 𝜏, yielding
𝜏𝛽𝑇𝑑. Similarly, our unit for salinity fluctuations is the background salinity difference
across 𝑑 rescaled by 𝑅𝑎−1, yielding 𝑅𝑎−1𝛽𝑆𝑑. The governing equations are

1
𝑆𝑐

(
𝜕

𝜕𝑡
+ u · ∇

)
u = −∇𝑝 + (𝑇 − 𝑆)ẑ + ∇2u, (2.2)

∇ · u = 0, (2.3)

𝜏

(
𝜕

𝜕𝑡
+ u · ∇

)
𝑇 + 𝑤 = ∇2𝑇, (2.4)

and (
𝜕

𝜕𝑡
+ u · ∇

)
𝑆 + 𝑅𝑎 𝑤 = ∇2𝑆, (2.5)

with velocity u = (𝑢, 𝑣, 𝑤) and temperature, salinity, and pressure fluctuations 𝑇 , 𝑆 and 𝑝.71
In what follows, we present DNS of the above system for different values of 𝑅𝑎. These72

simulations were performed using the pseudospectral-tau method implemented in Dedalus73
v2 (Burns et al. 2020). We use periodic boundary conditions with a horizontal domain74
size of (𝐿𝑥 , 𝐿𝑦) = (4 × 2𝜋/𝑘opt, 2 × 2𝜋/𝑘opt), where 𝑘opt(𝑃𝑟, 𝜏, 𝑅𝜌) is the horizontal75
wavenumber at which the linear instability is most unstable for a given set of parameters76
(for a subset of our parameters, we have checked that the dynamics and time-averaged77
fluxes change negligibly upon increasing 𝐿𝑥 and 𝐿𝑦). For the parameters of interest, the78
salt fingers become very extended in 𝑧, and thus our domain height must be very large to79
avoid artificial domain-size effects (see, e.g., Appendix A.3 of Traxler et al. 2011). For80
most of the cases reported here, we find 𝐿𝑧 = 64 × 2𝜋/𝑘opt to be sufficient (where we81
confirm this by comparing against results with 𝐿𝑧 = 128 × 2𝜋/𝑘opt), although we find that82
shorter domains suffice for R ≳ 1, while taller domains are necessary for R ≲ 1/8. We83
dealias using the standard 3/2-rule and use a numerical resolution of 8 Fourier modes per84
2𝜋/𝑘opt in each direction, although twice this resolution becomes necessary (as verified85
by convergence checks) for our simulations with the largest values of R. Note that, per our86
dealiasing procedure, nonlinearities are evaluated on a grid with 3/2 times this resolution.87
We timestep using a semi-implicit, second-order Adams-Bashforth/backwards difference88
scheme (Dedalus’ “SBDF2" option, Eq. [2.8] of Wang & Ruuth 2008), with nonlinearities89
treated explicitly and all other terms treated implicitly, and an advective CFL safety factor90
of 0.3 (sometimes 0.15 for our highest R cases). We initialize simulations with small-91
amplitude noise in 𝑆.92

3. Trends across R93

Figure 1 shows velocity snapshots from simulations with R = 1/80 (panels a-c), 1/1094
(panels d-f) and 1 (panels g-i), i.e., 𝑅𝜌 ≃ 19.75, 18.18 and 10, illustrating general trends95
in this regime. In each case, we see highly anisotropic and multiscale dynamics, with96
vertically elongated, large-amplitude structures (the characteristic salt fingers) in 𝑤, and97
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Figure 1. Flow velocity snapshots at 𝑦 = 0 in the saturated state from simulations of equations (2.2)-(2.5) with
varying supercriticality: R = 1/80 (a-c), R = 1/10 (d-f) and R = 1 (g-i), with timetraces of the corresponding
salinity flux shown in panels j, k, and l, respectively, alongside fluxes from different reduced models (see Sec. 4).
All cases exhibit a multiscale and anisotropic flow where fingers with large vertical extent and vertical velocity
(compared to horizontal width and velocity) coexist with small-scale, isotropic disturbances. Magenta curves
(panels e, f, h, and i) show the time-average (over the saturated state) of the horizontal, helical mean flow ū⊥
that becomes a significant feature for R ≳ 0.1.

smaller-amplitude, isotropic eddies seen in each velocity field. The separation between the98
long vertical and the short isotropic scales shrinks as R increases.99

At very small R (see panels a-c), the fingers become vertically invariant “elevator100
modes"1 disturbed by isotropic ripples. For moderate supercriticality, R ∼ 0.1, the fingers101
are no longer vertically invariant but still very anisotropic, with much larger vertical scale102
and velocity than in the horizontal.103

In this regime, a horizontal mean flow ū⊥ (where an overbar denotes horizontal104
averaging) develops spontaneously (cf. Liu et al. 2024), as shown by the magenta105
curves in panels e-f. The two components of ū⊥ are 𝜋/2 out of phase in 𝑧—i.e., one106
component passes through 0 as the other reaches an extremum—resulting in a strongly107
helical mean flow that advects the fingers into a corkscrew-like shape. In fact, this108

1At larger R, self-connecting structures only persist for insufficiently tall domains and lead to bursty and
domain height-dependent dynamics. At very small R, self-connecting structures persist in even the tallest
domains we can reasonably achieve numerically, but they do not drive bursty dynamics or domain height-
dependent dynamics.
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Figure 2. Relative helicity (see text) of the mean flow (blue) and of the fluctuations about the mean flow (orange;
multiplied by 104 to ease comparison) for two values of R. At small R, the flow is almost maximally helical,
and in both cases the fluctuations are highly non-helical, with 𝐻rel [u′] ∼ 10−5.
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Figure 3. Horizontal (blue) and vertical (orange) kinetic energy spectra versus 𝑘𝑧 at 𝑘𝑦 = 0 and 𝑘𝑥 = 𝑘opt. Black
lines show 𝑘𝑧 = 𝑘opt to highlight the small-scale isotropic flow component while the red vertical lines correspond
to the secondary peak in the horizontal spectrum to highlight the anisotropic, small 𝑘𝑧 flow component. The
ratio between these two wavenumbers provides one measure of anisotropy shown in Fig. 4.

mean flow is nearly a maximally helical (Beltrami) flow in that its relative helicity109
𝐻rel [u] ≡

∫
u · (∇ × u) d𝑉/[(

∫
|u|2 d𝑉) (

∫
|∇ × u|2d𝑉)]1/2, calculated using the time-110

and horizontally-averaged flow, is over 0.99—alternatively, 𝐻rel of the instantaneous mean111
flow saturates at roughly 0.8, see Fig. 2. While 𝐻rel > 0 for this particular simulation, other112
random initial conditions lead to 𝐻rel < 0 (not shown) with no clear statistical preference113
between the two signs based on our limited sample. In stark contrast to the strongly helical114
mean flow, the relative helicity of the fluctuations about the mean is roughly 10−5. This115
leads to the remarkable observation that the system spontaneously forms a symmetry-116
breaking, maximally helical flow from nonhelical fluctuations, similar to that observed by117
Słomka & Dunkel (2017), Agoua et al. (2021) and Romeo et al. (2024).118

For yet larger R (see Fig. 1 panels g-i), both the mean flow and the fingers become119
more vigorous, and the anisotropy of the fingers is less extreme, permitting shorter vertical120
domains. In this regime, the mean flow is still very helical at each 𝑧, but tends to have a121
shorter length scale and its helicity may change sign with 𝑧 (see Fig. 2 panel b).122

Both the multiscale aspect of this system and the trends in scale separation with R are123
readily seen in Fig. 3, which shows spectra of the kinetic energy as a function of the vertical124
wavenumber 𝑘𝑧 at 𝑘⊥ = 𝑘opt, the fastest-growing wavenumber of the linear instability. Two125
distinguishing features are seen most clearly in the horizontal kinetic energy, which has126
a local maximum (or otherwise a clear change in the spectrum, in the case of large R)127
at isotropic scales where 𝑘𝑧 ∼ 𝑘opt, indicated by the black vertical lines, and a local128
maximum at smaller 𝑘𝑧 indicated by the red vertical lines. Note that the gap in 𝑘𝑧 between129
these two local maxima shrinks as R increases, consistent with the observed decrease in130
scale separation with increasing R (Fig. 1).131
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Figure 4. Scalings with respect to R of several quantities (indicated in the caption for each panel) for the
full system, Eqs. (2.2)-(2.5) (blue dots), the IFSC model, with Eqs. (2.4) and (2.2) replaced by Eqs. (4.1)
and (4.2) (green diamonds), and the modified IFSC (MIFSC) model, where Eq. (2.2) is replaced instead by
Eqs. (4.14)-(4.15) (orange crosses). Black dashed lines show scalings predicted by the multiscale asymptotic
analysis described in the text. The green dashed lines and the two measures of anisotropy are described in the
text.

4. Asymptotic models132

The IFSC model of Xie et al. (2017), in three dimensions (3D), is appropriate when 𝜏 ≪ 1
and 𝑆𝑐 ≫ 1 and is described by the equations

𝑤 = ∇2𝑇, (4.1)

0 = −∇𝑝 + (𝑇 − 𝑆)ẑ + ∇2u, (4.2)
with Eqs. (2.3) and (2.5) left unchanged. While it appears that the model should be valid133
for all order one R, we show in Fig. 1 that this is not the case: the model does produce134
dynamics and fluxes consistent with the full system at sufficiently small supercriticality,135
roughly R ≲ 1/80, but for R ≈ 1/20 or larger, it produces dynamics that differ qualitatively136
from solutions of the full equations—while the full system exhibits helical mean flows that137
disrupt and twist the fingers on large scales, the IFSC model removes the Reynolds stress138
term from the horizontal mean of Eq. (2.2) and thus lacks these flows. Without mean flows139
to disrupt the long fingers, such fingers drive temporally bursty dynamics that dramatically140
raise the fluxes, as shown by the IFSC curve in panel k of Fig. 1.141

However, the IFSC model can be modified to capture mean flow generation. Our142
simulations suggest that anisotropy is an essential aspect of a reduced description of salt143
fingers valid in the regime depicted in Fig. 1, possibly with a rescaling of the various fields144
to retain the Reynolds stress at leading order. In order to capture both the elongated fingers145
shown in Fig. 1 and the small scale isotropic fluctuations therein, we employ a multiscale146
asymptotic analysis inspired by a related approach to turbulence in stably stratified fluids147
employed by Chini et al. (2022),Shah et al. (2024), and Garaud et al. (2024).148

To begin, we note that the growth rate and optimal wavenumber of the linear instability
scale as R3/2 and R1/4, respectively, for sufficiently small R—for the 𝑃𝑟, 𝜏 considered
here, this scaling is achieved for R ≲ 1 (see, e.g., Fig. 3 of Xie et al. 2017). It is thus
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convenient to rescale the independent and dependent variables as follows (cf. Radko 2010):

x ↦→ R−1/4x, 𝑡 ↦→ R−3/2𝑡, u ↦→ R5/4u, 𝑝 ↦→ R3/2𝑝, (𝑇, 𝑆) ↦→ R3/4(𝑇, 𝑆).
(4.3)

Equations (2.2)-(2.5) then become

R 1
𝑆𝑐

(
𝜕

𝜕𝑡
+ u · ∇

)
u = −∇𝑝 + R−1(𝑇 − 𝑆)ẑ + ∇2u, (4.4)

R𝜏

(
𝜕

𝜕𝑡
+ u · ∇

)
𝑇 + 𝑤 = ∇2𝑇, (4.5)

and

R
(
𝜕

𝜕𝑡
+ u · ∇

)
𝑆 + 𝑅𝑎 𝑤 = ∇2𝑆, (4.6)

with Eq. (2.3) left unchanged. When R = O(1) but 𝜏 ≪ 1 and 𝑆𝑐 ≫ 1, the inertial terms
in Eqs. (4.4)-(4.5) drop out and the resulting equations correspond to the 3D IFSC model
with Eq. (4.6) providing the sole prognostic equation. On the other hand, when R ≪ 1,
we may expand all fields as asymptotic series in R as 𝑞 =

∑
𝑛 𝑞𝑛R𝑛. Inspecting the 𝑧

component of Eq. (4.4) in the limit R → 0 shows that 𝑇0 = 𝑆0, i.e., the dynamics are
neutrally buoyant (or asymptotically spicy) in this limit. In the following it is helpful to
introduce the buoyancy 𝑏 ≡ R−1(𝑇 − 𝑆) and subtract Eq. (4.5) from Eq. (4.6), yielding(

𝜕

𝜕𝑡
+ u · ∇

)
(𝑆 − 𝜏𝑇) + 𝑤 = −∇2𝑏. (4.7)

Next, inspired by the work of Chini et al. (2022) and Shah et al. (2024), we introduce
appropriate fast and slow vertical scales but consider a single horizontal scale only. We
further take the fast vertical scale to be isotropic, so that the slow vertical scale captures
the elongated fingers seen in Fig. 1. For this purpose, we take 𝜕𝑧 ↦→ 𝛼−1𝜕𝑧𝑠 + 𝜕𝑧 𝑓 with
𝛼 ≫ 1, and let 𝑞 = ⟨𝑞⟩ 𝑓 +𝑞, where ⟨·⟩ 𝑓 represents an average over 𝑧 𝑓 . Furthermore, noting
that the mean flow develops on a slow timescale relative to the growth and saturation of
the primary instability (compare Fig. 2 to panels k and l of Fig. 1), we assume that ⟨ū⊥⟩ 𝑓
varies on a slow timescale, so that 𝜕𝑡 ⟨ū⊥⟩ 𝑓 ↦→ 𝛼−1𝜕𝑡𝑠 . Rescaling

〈
u′
⊥
〉
𝑓
↦→ 𝛼−1 〈u′

⊥
〉
𝑓

and ⟨𝑝⟩ 𝑓 ↦→ 𝛼−1 ⟨𝑝⟩ 𝑓 (where primed quantities denote fluctuations about the mean:
𝑞′ ≡ 𝑞 − 𝑞), the resulting equations reduce at leading order in R ≪ 1 and 𝜏 ≪ 1 to:

⟨𝑤⟩ 𝑓 = ∇2
⊥ ⟨𝑇⟩ 𝑓 and �̃� = ∇2

𝑓𝑇, (4.8)[
𝜕

𝜕𝑡
+ ⟨ū⊥⟩ 𝑓 · ∇⊥

]
⟨𝑆⟩ 𝑓 +

〈
ũ · ∇ 𝑓 𝑆

〉
𝑓
+ ⟨𝑤⟩ 𝑓 = −∇2

⊥ ⟨𝑏⟩ 𝑓 , (4.9)

[
𝜕

𝜕𝑡
+ ⟨ū⊥⟩ 𝑓 · ∇⊥ + ⟨𝑤⟩ 𝑓

𝜕

𝜕𝑧 𝑓

]
𝑆 + ũ · ∇ 𝑓 𝑆 −

〈
ũ · ∇ 𝑓 𝑆

〉
𝑓

+ ũ⊥ · ∇⊥ ⟨𝑆⟩ 𝑓 + �̃� = −∇2
𝑓 �̃�, (4.10)

0 = −∇⊥ ⟨𝑝⟩ 𝑓 + ⟨𝑏⟩ 𝑓 ẑ + ∇2
⊥ ⟨u′⟩ 𝑓 and 0 = −∇ 𝑓 𝑝 + �̃�ẑ + ∇2

𝑓 ũ
′, (4.11)

𝜕

𝜕𝑡𝑠
⟨ū⊥⟩ 𝑓 +

𝜕

𝜕𝑧𝑠

〈
ũ⊥�̃�

〉
𝑓
=

𝑆𝑐

R
1
𝛼

𝜕2

𝜕𝑧2
𝑠

⟨ū⊥⟩ 𝑓 , (4.12)
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∇𝑠 · ⟨u′⟩ 𝑓 = 0 and ∇ 𝑓 · ũ′ = 0, (4.13)
where we have introduced ∇𝑠 ≡ (𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧𝑠 ) and ∇ 𝑓 ≡ (𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧 𝑓 ). Taking 𝛼 = 𝑆𝑐/R ≫
1 results in a balance between Reynolds stress and viscous dissipation in Eq. (4.12).
The structure of this system of equations is broadly similar to the IFSC model: the
temperature equations reduce to a diagnostic balance between diffusion and advection of
the background, the salinity equations retain nonlinearity on fast scales (and so do not yield
a quasilinear structure as in the work of Chini et al. 2022), and the momentum equations for
fluctuations about the mean flow involve a dominant balance between pressure, buoyancy,
and viscosity. However, in contrast to the IFSC model, Eq. (4.12) retains the Reynolds stress
term absent from Eq. (4.2). Thus, modifying the IFSC model to capture the leading-order
dynamics of the full equations in this limit merely requires retaining the Reynolds stress
in the k⊥ = 0 component of the momentum equation:

1
𝑆𝑐

(
𝜕

𝜕𝑡
ū⊥ + 𝜕

𝜕𝑧
u′
⊥𝑤

′
)
=

𝜕2

𝜕𝑧2 ū⊥, (4.14)

0 = −∇𝑝′ + (𝑇 ′ − 𝑆′)ẑ + ∇2u′, (4.15)
with temperature given by Eq. (4.1), and Eqs. (2.3) and (2.5) retained in full. Figure 1149
shows that this modified IFSC (MIFSC) model captures the same dynamics as the full150
equations even for R = 𝑂 (1).151

The rescaling applied to arrive at the above multiscale asymptotic system offers a natural152
suggestion for the scaling of the various fields in this limit. For Eqs. (2.2)-(2.5), this analysis153
predicts that both 𝑆 and 𝑇 should scale as R3/4, ū⊥ and 𝑤 as R5/4, and the scaling of u′

⊥154

should differ between fast and slow scales in 𝑧, with
〈
u′
⊥
〉
𝑓
∼ R9/4 and ũ′

⊥ ∼ R5/4. The155

predicted stronger R dependence of
〈
u′
⊥
〉
𝑓

is consistent with Fig. 3, which shows that the156

horizontal kinetic energy peaks at large 𝑘𝑧 for small R but at small 𝑘𝑧 for large R.157
We present a more quantitative comparison between these predictions and DNS in Fig. 4158

by calculating the root-mean-square (r.m.s.) of u′
⊥, ū⊥,𝑤, 𝑆 and𝑇 , and the volume-averaged159

fluxes 𝐹𝑆 = ⟨𝑤𝑆⟩ and 𝐹𝑇 = ⟨𝑤𝑇⟩, with the blue dots corresponding to DNS of the full160
equations, green diamonds to the IFSC model, and orange crosses to the modified IFSC161
model. Anisotropy is quantified by two means: using the wavenumber ratio corresponding162
to the two spectral peaks in Fig. 3 (plus symbols; the lowest R values are suppressed163
because the low 𝑘𝑧 peak is difficult to identify and is likely constrained by domain size),164
and the ratio 𝑤rms/u′

⊥,rms (dots). In each panel, black dashed lines correspond to the165

predicted scalings (for u′
⊥,rms, the black line shows the predicted ũ′

⊥ ∼ R5/4 scaling while166

the green line shows the
〈
u′
⊥
〉
𝑓
∼ R9/4 scaling). The scalings of most of these quantities167

are consistent with predictions as R → 0, especially 𝑤rms, 𝑆rms, 𝑇rms, 𝐹𝑆 and 𝐹𝑇 , with168
the anisotropy measurement inconclusive. In contrast, the r.m.s. of the mean flow, ū⊥,rms,169

follows the predicted R5/4 scaling at larger R only.2170

5. Conclusions171

We have explored the dynamics of salt fingers in 3D and in the limit of slow salinity172
diffusion (𝜏 ≪ 1, 𝑃𝑟/𝜏 ≫ 1) and weak or moderate instability (R ≡ 𝑅−1

𝜌 𝜏−1 − 1 ≤ 4).173
This regime was studied in 2D by Xie et al. (2017), who showed that the temperature174

2It is worth noting, however, that the mean flow is very weak and evolves very slowly at the smallest values
of R, and is thus difficult to measure precisely.
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equation reduces to a diagnostic balance akin to the low-Péclet number limit of Lignières175
(1999) (see also Prat et al. 2015; Garaud 2021) and that the vorticity equation is governed176
by a diagnostic balance between buoyancy and viscous diffusion; Xie et al. referred to177
these reduced equations as the inertia-free salt convection (IFSC) model.178

Simulations of the full equations in 3D exhibit significant departures from the 2D system.179
First, the 3D case is characterized by rich, multiscale dynamics where anisotropic fingers180
are twisted at large scales by a helical mean flow and disrupted at small scales by isotropic181
eddies. This helical mean flow is a maximally helical, Beltrami flow in some regimes, with182
helicity of either sign depending on the random initial conditions, and provides a striking183
example of spontaneous symmetry breaking, much as occurs in the systems studied by184
Słomka & Dunkel (2017), Agoua et al. (2021) and Romeo et al. (2024). Second, 3D185
simulations of the IFSC model exhibit qualitatively different dynamics and significantly186
enhanced fluxes over the full equations unless the instability is very weak (R ≪ 0.1)—a187
consequence of the exclusion of Reynolds stresses in the IFSC model.188

The observed multiscale dynamics inform a multiscale asymptotic expansion in the189
supercriticality R where the leading-order equations form a closed system. This analysis190
identifies the leading-order terms missing from the IFSC model—the Reynolds stresses in191
the equations for the horizontal mean flow—and predicts the scaling of the various fields192
and fluxes with R. Simulations of the full equations are consistent with these predictions193
except for the scaling of the mean flow, which has a stronger dependence on R than194
suggested by the asymptotic analysis. Furthermore, simulations of the MIFSC equations—195
the IFSC equations with Reynolds stresses retained—yield qualitative and quantitative196
agreement with DNS of the full equations up to R ≈ 1, further supporting the derived197
leading-order balances.198

A noteworthy feature of the MIFSC model is that, to leading order, the fluctuations199
u′
⊥ ≡ u⊥ − ū⊥ have strictly zero helicity. Thus, the helical flow represents a spontaneous200

symmetry-breaking instability arising from asymptotically non-helical fluctuations, analo-201
gous to the development of unidirectional traveling waves in reflection-symmetric systems202
(Knobloch et al. 1986).203

Our computations of the r.m.s. values of the various fields broadly support the scalings204
with R predicted from the asymptotic analysis. For comparison, Garaud et al. (2024)205
devised a means to extract the scalings of fast-averaged quantities ⟨𝑞⟩ 𝑓 and their fluctuations206
𝑞 separately, demonstrating that their scalings differed in their system. In the present case,207
our asymptotic analysis points to fields other than u′

⊥ exhibiting identical scalings on fast208
and slow scales. While we find no clear discrepancies in our simulations, future work209
should extend the approach of Garaud et al. (2024) to the present system to test these210
predictions more carefully.211

Our reduced equations—and those of Xie et al. (2017) and Prat et al. (2015)—indicate212
that for 𝜏 ≪ 1 the dynamics no longer depend on 𝑃𝑟 and 𝜏 separately, and only depend213
on the combination 𝑆𝑐 ≡ 𝑃𝑟/𝜏. Thus, while we have only simulated the full equations at214
𝑃𝑟 = 5, we may expect our simulations of the reduced equations at 𝑆𝑐 = 100 to be consistent215
with the full system in the astrophysically relevant regime of small 𝑃𝑟 , 𝜏 ∼ 10−7-10−4 (Prat216
et al. 2015; Skoutnev & Beloborodov 2024). We are thus led to expect that helical flows217
may form in the interiors of stars, an exciting prospect due to their tendency to support218
dynamo growth (Rincon 2019; Tobias 2021).219

Both the reduced and the full equations admit (unstable) single-mode solutions that220
may provide a useful proxy for flux computations in the strongly nonlinear regime, and221
investigations of the role played by the helical mean flow. Outstanding questions involve222
possible reversals of this flow in longer simulations, and the generation of such flows in223
vertically confined domains. The multiparameter nature of the problem raises additional224
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questions involving distinct asymptotic regimes when both 𝜏 and 𝑆𝑐−1 are small and if225
𝑆𝑐 = 𝑂 (1) in the regime of small 𝜏 and 𝑃𝑟—note that 𝑆𝑐 ∼ 102 is likely in stars.226
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